File size: 23,431 Bytes
f8dbf90
 
1b83088
98e1f97
1b83088
4bf76df
d4a5735
4bf76df
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8dbf90
1b83088
 
3134b3b
1b83088
f8dbf90
d4a5735
 
 
 
f8dbf90
 
 
e705807
f8dbf90
3134b3b
d4a5735
1b83088
f8dbf90
cba9efc
f8dbf90
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8e60f
 
 
 
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9dc4d
d4a5735
 
 
 
 
ad8639b
d4a5735
 
ca9dc4d
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9dc4d
d4a5735
 
ca9dc4d
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff1791
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff1791
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cff1791
 
75b06d3
 
d4a5735
 
838191d
d4a5735
 
 
 
 
da7ac0b
d4a5735
 
 
 
 
 
 
d35faf8
d4a5735
83ac817
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae1ac19
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1447e0
d35faf8
990d424
d4a5735
d35faf8
75b06d3
 
d4a5735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModel, pipeline, GPT2LMHeadModel, GPT2Tokenizer
import ast
import networkx as nx
import matplotlib.pyplot as plt
import re
import javalang
import clang.cindex
import radon.metrics as radon_metrics
import radon.complexity as radon_complexity
import black
import isort
import autopep8
from typing import List, Dict, Any
import joblib
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn

# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])

# Create the model with optimized parameters and enhanced system instructions
generation_config = {
    "temperature": 0.7,
    "top_p": 0.9,
    "top_k": 40,
    "max_output_tokens": 32768,
}

model = genai.GenerativeModel(
    model_name="gemini-1.5-pro",
    generation_config=generation_config,
    system_instruction="""
    You are Ath, an extremely advanced code assistant with deep expertise in AI, machine learning, software engineering, and multiple programming languages. You provide cutting-edge, optimized, and secure code solutions across various domains. Use your vast knowledge to generate high-quality code, perform advanced analyses, and offer insightful optimizations. Adapt your language and explanations based on the user's expertise level. Incorporate the latest advancements in AI and software development to provide state-of-the-art solutions.
    """
)
chat_session = model.start_chat(history=[])

# Load pre-trained models for code understanding and generation
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
code_generation_model = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")

# Load GPT-2 for more advanced text generation
gpt2_model = GPT2LMHeadModel.from_pretrained("gpt2-large")
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")

class AdvancedCodeImprovement(nn.Module):
    def __init__(self, input_dim):
        super(AdvancedCodeImprovement, self).__init__()
        self.lstm = nn.LSTM(input_dim, 512, num_layers=2, batch_first=True, bidirectional=True)
        self.attention = nn.MultiheadAttention(1024, 8)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 128)
        self.fc4 = nn.Linear(128, 64)
        self.fc5 = nn.Linear(64, 32)
        self.fc6 = nn.Linear(32, 8)  # Extended classification: style, efficiency, security, maintainability, scalability, readability, testability, modularity

    def forward(self, x):
        x, _ = self.lstm(x)
        x, _ = self.attention(x, x, x)
        x = x.mean(dim=1)  # Global average pooling
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = torch.relu(self.fc3(x))
        x = torch.relu(self.fc4(x))
        x = torch.relu(self.fc5(x))
        return torch.sigmoid(self.fc6(x))

code_improvement_model = AdvancedCodeImprovement(768)  # 768 is BERT's output dimension
optimizer = optim.Adam(code_improvement_model.parameters())
criterion = nn.BCELoss()

# Load pre-trained code improvement model
if os.path.exists("code_improvement_model.pth"):
    code_improvement_model.load_state_dict(torch.load("code_improvement_model.pth"))
    code_improvement_model.eval()

def generate_response(user_input: str) -> str:
    try:
        response = chat_session.send_message(user_input)
        return response.text
    except Exception as e:
        return f"Error in generating response: {str(e)}"

def detect_language(code: str) -> str:
    # Enhanced language detection with more specific patterns
    patterns = {
        'python': r'\b(def|class|import|from|if\s+__name__\s*==\s*[\'"]__main__[\'"])\b',
        'javascript': r'\b(function|var|let|const|=>|document\.getElementById)\b',
        'java': r'\b(public\s+class|private|protected|package|import\s+java)\b',
        'c++': r'\b(#include\s*<|using\s+namespace|template\s*<|std::)',
        'ruby': r'\b(def|class|module|require|attr_accessor)\b',
        'go': r'\b(func|package\s+main|import\s*\(|fmt\.Println)\b',
        'rust': r'\b(fn|let\s+mut|impl|pub\s+struct|use\s+std)\b',
        'typescript': r'\b(interface|type|namespace|readonly|abstract\s+class)\b',
    }
    
    for lang, pattern in patterns.items():
        if re.search(pattern, code):
            return lang
    return 'unknown'

def validate_and_fix_code(code: str, language: str) -> tuple[str, str]:
    if language == 'python':
        try:
            fixed_code = autopep8.fix_code(code)
            fixed_code = isort.SortImports(file_contents=fixed_code).output
            fixed_code = black.format_str(fixed_code, mode=black.FileMode())
            return fixed_code, ""
        except Exception as e:
            return code, f"Error in fixing Python code: {str(e)}"
    elif language == 'javascript':
        # Use a JS beautifier (placeholder)
        return code, ""
    elif language == 'java':
        # Use a Java formatter (placeholder)
        return code, ""
    elif language == 'c++':
        # Use a C++ formatter (placeholder)
        return code, ""
    else:
        return code, ""

def optimize_code(code: str) -> tuple[str, str]:
    language = detect_language(code)
    fixed_code, fix_error = validate_and_fix_code(code, language)
    
    if fix_error:
        return fixed_code, fix_error

    if language == 'python':
        try:
            tree = ast.parse(fixed_code)
            # Perform advanced Python-specific optimizations
            optimizer = PythonCodeOptimizer()
            optimized_tree = optimizer.visit(tree)
            optimized_code = ast.unparse(optimized_tree)
        except SyntaxError as e:
            return fixed_code, f"SyntaxError: {str(e)}"
    elif language == 'java':
        try:
            tree = javalang.parse.parse(fixed_code)
            # Perform Java-specific optimizations
            optimizer = JavaCodeOptimizer()
            optimized_code = optimizer.optimize(tree)
        except javalang.parser.JavaSyntaxError as e:
            return fixed_code, f"JavaSyntaxError: {str(e)}"
    elif language == 'c++':
        try:
            index = clang.cindex.Index.create()
            tu = index.parse('temp.cpp', args=['-std=c++14'], unsaved_files=[('temp.cpp', fixed_code)])
            # Perform C++-specific optimizations
            optimizer = CppCodeOptimizer()
            optimized_code = optimizer.optimize(tu)
        except Exception as e:
            return fixed_code, f"C++ Parsing Error: {str(e)}"
    else:
        optimized_code = fixed_code  # For unsupported languages, return the fixed code

    # Run language-specific linter
    lint_results = run_linter(optimized_code, language)
    
    return optimized_code, lint_results

def run_linter(code: str, language: str) -> str:
    if language == 'python':
        with open("temp_code.py", "w") as file:
            file.write(code)
        result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
        os.remove("temp_code.py")
        return result.stdout
    elif language == 'javascript':
        # Run ESLint (placeholder)
        return "JavaScript linting not implemented"
    elif language == 'java':
        # Run CheckStyle (placeholder)
        return "Java linting not implemented"
    elif language == 'c++':
        # Run cppcheck (placeholder)
        return "C++ linting not implemented"
    else:
        return "Linting not available for the detected language"

def fetch_from_github(query: str) -> List[Dict[str, Any]]:
    headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"}
    response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers)
    if response.status_code == 200:
        return response.json()['items'][:5]  # Return top 5 results
    return []

def analyze_code_quality(code: str) -> Dict[str, float]:
    inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
    
    with torch.no_grad():
        outputs = codebert_model(**inputs)
    
    cls_embedding = outputs.last_hidden_state[:, 0, :]
    predictions = code_improvement_model(cls_embedding)
    
    quality_scores = {
        "style": predictions[0][0].item(),
        "efficiency": predictions[0][1].item(),
        "security": predictions[0][2].item(),
        "maintainability": predictions[0][3].item(),
        "scalability": predictions[0][4].item(),
        "readability": predictions[0][5].item(),
        "testability": predictions[0][6].item(),
        "modularity": predictions[0][7].item()
    }
    
    # Calculate additional metrics
    language = detect_language(code)
    if language == 'python':
        complexity = radon_complexity.cc_visit(code)
        maintainability = radon_metrics.mi_visit(code, True)
        quality_scores["cyclomatic_complexity"] = complexity[0].complexity if complexity else 0
        quality_scores["maintainability_index"] = maintainability
    
    return quality_scores

def visualize_code_structure(code: str) -> plt.Figure:
    try:
        tree = ast.parse(code)
        graph = nx.DiGraph()
        
        def add_nodes_edges(node, parent=None):
            node_id = id(node)
            graph.add_node(node_id, label=f"{type(node).__name__}\n{ast.unparse(node)[:20]}")
            if parent:
                graph.add_edge(id(parent), node_id)
            for child in ast.iter_child_nodes(node):
                add_nodes_edges(child, node)
        
        add_nodes_edges(tree)
        
        plt.figure(figsize=(15, 10))
        pos = nx.spring_layout(graph, k=0.9, iterations=50)
        nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=2000, font_size=8, font_weight='bold', arrows=True)
        labels = nx.get_node_attributes(graph, 'label')
        nx.draw_networkx_labels(graph, pos, labels, font_size=6)
        
        return plt
    except SyntaxError:
        return None

def suggest_improvements(code: str, quality_scores: Dict[str, float]) -> List[str]:
    suggestions = []
    thresholds = {
        "style": 0.7,
        "efficiency": 0.7,
        "security": 0.8,
        "maintainability": 0.7,
        "scalability": 0.7,
        "readability": 0.7,
        "testability": 0.7,
        "modularity": 0.7
    }
    
    for metric, threshold in thresholds.items():
        if quality_scores[metric] < threshold:
            suggestions.append(f"Consider improving code {metric} (current score: {quality_scores[metric]:.2f}).")
    
    if "cyclomatic_complexity" in quality_scores and quality_scores["cyclomatic_complexity"] > 10:
        suggestions.append(f"Consider breaking down complex functions to reduce cyclomatic complexity (current: {quality_scores['cyclomatic_complexity']}).")
    
    return suggestions

# New function for advanced code generation using GPT-2
def generate_advanced_code(prompt: str, language: str) -> str:
    input_text = f"Generate {language} code for: {prompt}\n\n"
    input_ids = gpt2_tokenizer.encode(input_text, return_tensors="pt")
    
    output = gpt2_model.generate(
        input_ids,
        max_length=1000,
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        top_k=50,
        top_p=0.95,
        temperature=0.7
    )
    
    generated_code = gpt2_tokenizer.decode(output[0], skip_special_tokens=True)
    return generated_code.split("\n\n", 1)[1]  # Remove the input prompt from the generated text

# New function for code similarity analysis
def analyze_code_similarity(code1: str, code2: str) -> float:
    tokens1 = tokenizer.tokenize(code1)
    tokens2 = tokenizer.tokenize(code2)
    
    # Use Jaccard similarity for token-based comparison
    set1 = set(tokens1)
    set2 = set(tokens2)
    similarity = len(set1.intersection(set2)) / len(set1.union(set2))
    
    return similarity

# New function for code performance estimation
def estimate_code_performance(code: str) -> Dict[str, Any]:
    language = detect_language(code)
    if language == 'python':
        # Use abstract syntax tree to estimate time complexity
        tree = ast.parse(code)
        analyzer = ComplexityAnalyzer()
        analyzer.visit(tree)
        return {
            "time_complexity": analyzer.time_complexity,
            "space_complexity": analyzer.space_complexity
        }
    else:
        return {"error": "Performance estimation not supported for this language"}

class ComplexityAnalyzer(ast.NodeVisitor):
    def __init__(self):
        self.time_complexity = "O(1)"
        self.space_complexity = "O(1)"
        self.loop_depth = 0

    def visit_For(self, node):
        self.loop_depth += 1
        self.generic_visit(node)
        self.loop_depth -= 1
        self.update_complexity()

    def visit_While(self, node):
        self.loop_depth += 1
        self.generic_visit(node)
        self.loop_depth -= 1
        self.update_complexity()

    def update_complexity(self):
        if self.loop_depth > 0:
            self.time_complexity = f"O(n^{self.loop_depth})"
            self.space_complexity = "O(n)"

# New function for code translation between programming languages
def translate_code(code: str, source_lang: str, target_lang: str) -> str:
    prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code}\n\nTranslated {target_lang} code:"
    translated_code = generate_advanced_code(prompt, target_lang)
    return translated_code

# New function for generating unit tests
def generate_unit_tests(code: str, language: str) -> str:
    prompt = f"Generate unit tests for the following {language} code:\n\n{code}\n\nUnit tests:"
    unit_tests = generate_advanced_code(prompt, language)
    return unit_tests

# New function for code documentation generation
def generate_documentation(code: str, language: str) -> str:
    prompt = f"Generate comprehensive documentation for the following {language} code:\n\n{code}\n\nDocumentation:"
    documentation = generate_advanced_code(prompt, language)
    return documentation

# New function for advanced code refactoring suggestions
def suggest_refactoring(code: str, language: str) -> List[str]:
    quality_scores = analyze_code_quality(code)
    suggestions = suggest_improvements(code, quality_scores)
    
    # Add more specific refactoring suggestions based on code analysis
    tree = ast.parse(code)
    analyzer = RefactoringAnalyzer()
    analyzer.visit(tree)
    
    suggestions.extend(analyzer.suggestions)
    return suggestions

class RefactoringAnalyzer(ast.NodeVisitor):
    def __init__(self):
        self.suggestions = []
        self.function_lengths = {}

    def visit_FunctionDef(self, node):
        function_length = len(node.body)
        self.function_lengths[node.name] = function_length
        if function_length > 20:
            self.suggestions.append(f"Consider breaking down the function '{node.name}' into smaller, more manageable functions.")
        self.generic_visit(node)

    def visit_If(self, node):
        if isinstance(node.test, ast.Compare) and len(node.test.ops) > 2:
            self.suggestions.append("Consider simplifying complex conditional statements.")
        self.generic_visit(node)

# New function for code security analysis
def analyze_code_security(code: str, language: str) -> List[str]:
    vulnerabilities = []
    
    if language == 'python':
        tree = ast.parse(code)
        analyzer = SecurityAnalyzer()
        analyzer.visit(tree)
        vulnerabilities.extend(analyzer.vulnerabilities)
    
    # Add more language-specific security checks here
    
    return vulnerabilities

class SecurityAnalyzer(ast.NodeVisitor):
    def __init__(self):
        self.vulnerabilities = []

    def visit_Call(self, node):
        if isinstance(node.func, ast.Name):
            if node.func.id == 'eval':
                self.vulnerabilities.append("Potential security risk: Use of 'eval' function detected.")
            elif node.func.id == 'exec':
                self.vulnerabilities.append("Potential security risk: Use of 'exec' function detected.")
        self.generic_visit(node)

# New function for code optimization suggestions
def suggest_optimizations(code: str, language: str) -> List[str]:
    suggestions = []
    
    if language == 'python':
        tree = ast.parse(code)
        analyzer = OptimizationAnalyzer()
        analyzer.visit(tree)
        suggestions.extend(analyzer.suggestions)
    
    # Add more language-specific optimization suggestions here
    
    return suggestions

class OptimizationAnalyzer(ast.NodeVisitor):
    def __init__(self):
        self.suggestions = []
        self.loop_variables = set()

    def visit_For(self, node):
        if isinstance(node.iter, ast.Call) and isinstance(node.iter.func, ast.Name) and node.iter.func.id == 'range':
            self.suggestions.append("Consider using 'enumerate()' instead of 'range()' for index-based iteration.")
        self.generic_visit(node)

    def visit_ListComp(self, node):
        if isinstance(node.elt, ast.Call) and isinstance(node.elt.func, ast.Name) and node.elt.func.id == 'append':
            self.suggestions.append("Consider using a list comprehension instead of appending in a loop for better performance.")
        self.generic_visit(node)

# Streamlit UI setup
st.set_page_config(page_title="Advanced AI Code Assistant", page_icon="πŸš€", layout="wide")

st.markdown("""
<style>
.main-container {
    padding: 2rem;
    border-radius: 10px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    background-color: #f8f9fa;
}
.title {
    color: #2c3e50;
    font-size: 2.5rem;
    margin-bottom: 1rem;
}
.subtitle {
    color: #34495e;
    font-size: 1.2rem;
    margin-bottom: 2rem;
}
.output-container {
    margin-top: 2rem;
    padding: 1rem;
    border-radius: 5px;
    background-color: #ffffff;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
.code-block {
    margin-bottom: 1rem;
}
.metric-container {
    display: flex;
    justify-content: space-between;
    flex-wrap: wrap;
}
.metric-item {
    flex-basis: 48%;
    margin-bottom: 1rem;
}
</style>
""", unsafe_allow_html=True)

st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.markdown('<h1 class="title">πŸš€ Advanced AI Code Assistant</h1>', unsafe_allow_html=True)
st.markdown('<p class="subtitle">Powered by Cutting-Edge AI & Multi-Domain Expertise</p>', unsafe_allow_html=True)

task = st.selectbox("Select a task", [
    "Generate Code", "Optimize Code", "Analyze Code Quality", 
    "Translate Code", "Generate Unit Tests", "Generate Documentation", 
    "Suggest Refactoring", "Analyze Code Security", "Suggest Optimizations"
])

language = st.selectbox("Select programming language", [
    "Python", "JavaScript", "Java", "C++", "Ruby", "Go", "Rust", "TypeScript"
])

prompt = st.text_area("Enter your code or prompt", height=200)

if st.button("Execute Task"):
    if prompt.strip() == "":
        st.error("Please enter a valid prompt or code snippet.")
    else:
        with st.spinner("Processing your request..."):
            if task == "Generate Code":
                result = generate_advanced_code(prompt, language.lower())
                st.code(result, language=language.lower())
            elif task == "Optimize Code":
                optimized_code, lint_results = optimize_code(prompt)
                st.code(optimized_code, language=language.lower())
                st.text(lint_results)
            elif task == "Analyze Code Quality":
                quality_scores = analyze_code_quality(prompt)
                st.json(quality_scores)
            elif task == "Translate Code":
                target_lang = st.selectbox("Select target language", [
                    lang for lang in ["Python", "JavaScript", "Java", "C++", "Ruby", "Go", "Rust", "TypeScript"] if lang != language
                ])
                translated_code = translate_code(prompt, language.lower(), target_lang.lower())
                st.code(translated_code, language=target_lang.lower())
            elif task == "Generate Unit Tests":
                unit_tests = generate_unit_tests(prompt, language.lower())
                st.code(unit_tests, language=language.lower())
            elif task == "Generate Documentation":
                documentation = generate_documentation(prompt, language.lower())
                st.markdown(documentation)
            elif task == "Suggest Refactoring":
                refactoring_suggestions = suggest_refactoring(prompt, language.lower())
                for suggestion in refactoring_suggestions:
                    st.info(suggestion)
            elif task == "Analyze Code Security":
                vulnerabilities = analyze_code_security(prompt, language.lower())
                if vulnerabilities:
                    for vuln in vulnerabilities:
                        st.warning(vuln)
                else:
                    st.success("No obvious security vulnerabilities detected.")
            elif task == "Suggest Optimizations":
                optimization_suggestions = suggest_optimizations(prompt, language.lower())
                for suggestion in optimization_suggestions:
                    st.info(suggestion)

            # Additional analysis for all tasks
            quality_scores = analyze_code_quality(prompt)
            performance_estimate = estimate_code_performance(prompt)
            
            col1, col2 = st.columns(2)
            with col1:
                st.subheader("Code Quality Metrics")
                for metric, score in quality_scores.items():
                    st.metric(metric.capitalize(), f"{score:.2f}")
            
            with col2:
                st.subheader("Performance Estimation")
                st.json(performance_estimate)
            
            visualization = visualize_code_structure(prompt)
            if visualization:
                st.subheader("Code Structure Visualization")
                st.pyplot(visualization)

st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
    Powered by Advanced AI & Multi-Domain Expertise
</div>
""", unsafe_allow_html=True)

st.markdown('</div>', unsafe_allow_html=True)

# FastAPI setup for potential API endpoints
app = FastAPI()

class CodeRequest(BaseModel):
    code: str
    language: str
    task: str

@app.post("/analyze")
async def analyze_code(request: CodeRequest):
    if request.task == "quality":
        return analyze_code_quality(request.code)
    elif request.task == "security":
        return analyze_code_security(request.code, request.language)
    elif request.task == "optimize":
        optimized_code, _ = optimize_code(request.code)
        return {"optimized_code": optimized_code}
    else:
        return {"error": "Invalid task"}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)