Code / app.py
Artificial-superintelligence's picture
Update app.py
68bdd93 verified
raw
history blame
7.87 kB
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import git
import spacy
from spacy.lang.en import English
import boto3
import unittest
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Create the model with optimized parameters and enhanced system instructions
generation_config = {
"temperature": 0.6, # Lower temperature for more deterministic responses
"top_p": 0.8, # Adjusted for better diversity
"top_k": 30, # Increased for more diverse tokens
"max_output_tokens": 16384, # Increased for longer responses
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction="""
You are Ath, a highly knowledgeable code assistant. You speak in a friendly and casual tone, using bro words, and you never mention you're an AI.
Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions.
"""
)
chat_session = model.start_chat(history=[])
def generate_response(user_input):
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
return f"Error: {e}"
def optimize_code(code):
# Placeholder for advanced code optimization logic
# This could involve using external tools or libraries for static analysis and optimization
with open("temp_code.py", "w") as file:
file.write(code)
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
os.remove("temp_code.py")
return code
def fetch_from_github(query):
# Placeholder for fetching code snippets from GitHub
# This could involve using the GitHub API to search for relevant code
return ""
def interact_with_api(api_url):
# Placeholder for interacting with external APIs
response = requests.get(api_url)
return response.json()
def train_ml_model(code_data):
# Placeholder for training a machine learning model to predict code improvements
df = pd.DataFrame(code_data)
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier()
model.fit(X_train, y_train)
return model
def handle_error(error):
# Placeholder for advanced error handling and logging
st.error(f"An error occurred: {error}")
def integrate_with_git(repo_path, code):
# Placeholder for integrating with version control systems like Git
repo = git.Repo(repo_path)
with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
file.write(code)
repo.index.add(["generated_code.py"])
repo.index.commit("Added generated code")
def process_user_input(user_input):
# Placeholder for advanced natural language processing
nlp = English()
doc = nlp(user_input)
return doc
def interact_with_cloud_services(service_name, action, params):
# Placeholder for interacting with cloud services
client = boto3.client(service_name)
response = getattr(client, action)(**params)
return response
def run_tests():
# Placeholder for automated testing
test_suite = unittest.TestLoader().discover('tests')
test_runner = unittest.TextTestRunner()
test_result = test_runner.run(test_suite)
return test_result
# Streamlit UI setup
st.set_page_config(page_title="Sleek AI Code Assistant", page_icon="πŸ’»", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
body {
font-family: 'Inter', sans-serif;
background-color: #f0f4f8;
color: #1a202c;
}
.stApp {
max-width: 1000px;
margin: 0 auto;
padding: 2rem;
}
.main-container {
background: #ffffff;
border-radius: 16px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
h1 {
font-size: 2.5rem;
font-weight: 700;
color: #2d3748;
text-align: center;
margin-bottom: 1rem;
}
.subtitle {
font-size: 1.1rem;
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
}
.stTextArea textarea {
border: 2px solid #e2e8f0;
border-radius: 8px;
font-size: 1rem;
padding: 0.75rem;
transition: all 0.3s ease;
}
.stTextArea textarea:focus {
border-color: #4299e1;
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
}
.stButton button {
background-color: #4299e1;
color: white;
border: none;
border-radius: 8px;
font-size: 1.1rem;
font-weight: 600;
padding: 0.75rem 2rem;
transition: all 0.3s ease;
width: 100%;
}
.stButton button:hover {
background-color: #3182ce;
}
.output-container {
background: #f7fafc;
border-radius: 8px;
padding: 1rem;
margin-top: 2rem;
}
.code-block {
background-color: #2d3748;
color: #e2e8f0;
font-family: 'Fira Code', monospace;
font-size: 0.9rem;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
overflow-x: auto;
}
.stAlert {
background-color: #ebf8ff;
color: #2b6cb0;
border-radius: 8px;
border: none;
padding: 0.75rem 1rem;
}
.stSpinner {
color: #4299e1;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("πŸ’» Sleek AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini</p>', unsafe_allow_html=True)
prompt = st.text_area("What code can I help you with today?", height=120)
if st.button("Generate Code"):
if prompt.strip() == "":
st.error("Please enter a valid prompt.")
else:
with st.spinner("Generating code..."):
try:
processed_input = process_user_input(prompt)
completed_text = generate_response(processed_input.text)
if "Error" in completed_text:
handle_error(completed_text)
else:
optimized_code = optimize_code(completed_text)
st.success("Code generated and optimized successfully!")
st.markdown('<div class="output-container">', unsafe_allow_html=True)
st.markdown('<div class="code-block">', unsafe_allow_html=True)
st.code(optimized_code)
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
# Integrate with Git
repo_path = "./repo" # Replace with your repository path
integrate_with_git(repo_path, optimized_code)
# Run automated tests
test_result = run_tests()
if test_result.wasSuccessful():
st.success("All tests passed successfully!")
else:
st.error("Some tests failed. Please check the code.")
except Exception as e:
handle_error(e)
st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
Created with ❀️ by Your Sleek AI Code Assistant
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)