Code / app.py
Artificial-superintelligence's picture
Update app.py
ae1ac19 verified
raw
history blame
9.89 kB
import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import AutoTokenizer, AutoModel
import ast
import networkx as nx
import matplotlib.pyplot as plt
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Create the model with optimized parameters and enhanced system instructions
generation_config = {
"temperature": 0.6,
"top_p": 0.8,
"top_k": 30,
"max_output_tokens": 16384,
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction="""
You are Ath, a highly advanced code assistant with deep knowledge in AI, machine learning, and software engineering. You provide cutting-edge, optimized, and secure code solutions. Speak casually and use tech jargon when appropriate.
"""
)
chat_session = model.start_chat(history=[])
# Load pre-trained BERT model for code understanding
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
class CodeImprovement(nn.Module):
def __init__(self, input_dim):
super(CodeImprovement, self).__init__()
self.fc1 = nn.Linear(input_dim, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 128)
self.fc4 = nn.Linear(128, 2) # Binary classification: needs improvement or not
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = torch.relu(self.fc3(x))
return torch.sigmoid(self.fc4(x))
code_improvement_model = CodeImprovement(768) # 768 is BERT's output dimension
optimizer = optim.Adam(code_improvement_model.parameters())
criterion = nn.BCELoss()
def generate_response(user_input):
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
return f"Error: {e}"
def optimize_code(code):
# Use abstract syntax tree for advanced code analysis
try:
tree = ast.parse(code)
analyzer = CodeAnalyzer()
analyzer.visit(tree)
# Apply code transformations based on analysis
transformer = CodeTransformer(analyzer.get_optimizations())
optimized_tree = transformer.visit(tree)
optimized_code = ast.unparse(optimized_tree)
except SyntaxError as e:
return code, f"SyntaxError: {str(e)}"
# Run pylint for additional suggestions
with open("temp_code.py", "w") as file:
file.write(optimized_code)
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
os.remove("temp_code.py")
return optimized_code, result.stdout
def fetch_from_github(query):
headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"}
response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers)
if response.status_code == 200:
return response.json()['items'][:5] # Return top 5 results
return []
def interact_with_api(api_url):
response = requests.get(api_url)
return response.json()
def train_ml_model(code_data):
df = pd.DataFrame(code_data)
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier(n_estimators=100, max_depth=10)
model.fit(X_train, y_train)
return model
def analyze_code_quality(code):
# Tokenize and encode the code
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
# Get BERT embeddings
with torch.no_grad():
outputs = codebert_model(**inputs)
# Use the [CLS] token embedding for classification
cls_embedding = outputs.last_hidden_state[:, 0, :]
# Pass through our code improvement model
prediction = code_improvement_model(cls_embedding)
return prediction.item() # Return the probability of needing improvement
def visualize_code_structure(code):
try:
tree = ast.parse(code)
graph = nx.DiGraph()
def add_nodes_edges(node, parent=None):
node_id = id(node)
graph.add_node(node_id, label=type(node).__name__)
if parent:
graph.add_edge(id(parent), node_id)
for child in ast.iter_child_nodes(node):
add_nodes_edges(child, node)
add_nodes_edges(tree)
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(graph)
nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=1000, font_size=8, font_weight='bold')
labels = nx.get_node_attributes(graph, 'label')
nx.draw_networkx_labels(graph, pos, labels, font_size=6)
return plt
except SyntaxError:
return None
# Streamlit UI setup
st.set_page_config(page_title="Advanced AI Code Assistant", page_icon="πŸš€", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
body {
font-family: 'Inter', sans-serif;
background-color: #f0f4f8;
color: #1a202c;
}
.stApp {
max-width: 1200px;
margin: 0 auto;
padding: 2rem;
}
.main-container {
background: #ffffff;
border-radius: 16px;
padding: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
h1 {
font-size: 2.5rem;
font-weight: 700;
color: #2d3748;
text-align: center;
margin-bottom: 1rem;
}
.subtitle {
font-size: 1.1rem;
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
}
.stTextArea textarea {
border: 2px solid #e2e8f0;
border-radius: 8px;
font-size: 1rem;
padding: 0.75rem;
transition: all 0.3s ease;
}
.stTextArea textarea:focus {
border-color: #4299e1;
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
}
.stButton button {
background-color: #4299e1;
color: white;
border: none;
border-radius: 8px;
font-size: 1.1rem;
font-weight: 600;
padding: 0.75rem 2rem;
transition: all 0.3s ease;
width: 100%;
}
.stButton button:hover {
background-color: #3182ce;
}
.output-container {
background: #f7fafc;
border-radius: 8px;
padding: 1rem;
margin-top: 2rem;
}
.code-block {
background-color: #2d3748;
color: #e2e8f0;
font-family: 'Fira Code', monospace;
font-size: 0.9rem;
border-radius: 8px;
padding: 1rem;
margin-top: 1rem;
overflow-x: auto;
}
.stAlert {
background-color: #ebf8ff;
color: #2b6cb0;
border-radius: 8px;
border: none;
padding: 0.75rem 1rem;
}
.stSpinner {
color: #4299e1;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<div class="main-container">', unsafe_allow_html=True)
st.title("πŸš€ Advanced AI Code Assistant")
st.markdown('<p class="subtitle">Powered by Google Gemini & Deep Learning</p>', unsafe_allow_html=True)
prompt = st.text_area("What advanced code task can I help you with today?", height=120)
if st.button("Generate Advanced Code"):
if prompt.strip() == "":
st.error("Please enter a valid prompt.")
else:
with st.spinner("Generating and analyzing code..."):
completed_text = generate_response(prompt)
if "Error" in completed_text:
st.error(completed_text)
else:
optimized_code, lint_results = optimize_code(completed_text)
if "SyntaxError" in lint_results:
st.warning(f"Syntax error detected: {lint_results}")
st.code(completed_text)
else:
quality_score = analyze_code_quality(optimized_code)
st.success(f"Code generated and optimized successfully! Quality Score: {quality_score:.2f}")
st.markdown('<div class="output-container">', unsafe_allow_html=True)
st.markdown('<div class="code-block">', unsafe_allow_html=True)
st.code(optimized_code)
st.markdown('</div>', unsafe_allow_html=True)
visualization = visualize_code_structure(optimized_code)
if visualization:
with st.expander("View Code Structure Visualization"):
st.pyplot(visualization)
else:
st.warning("Unable to generate code structure visualization due to syntax errors.")
with st.expander("View Lint Results"):
st.text(lint_results)
with st.expander("Fetch Similar Code from GitHub"):
github_results = fetch_from_github(prompt)
for item in github_results:
st.markdown(f"[{item['name']}]({item['html_url']})")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown("""
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
Crafted with πŸš€ by Your Advanced AI Code Assistant
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)