Update app.py
Browse files
app.py
CHANGED
@@ -5,30 +5,59 @@ import subprocess
|
|
5 |
import os
|
6 |
import pylint
|
7 |
import pandas as pd
|
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
from sklearn.ensemble import RandomForestClassifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Configure the Gemini API
|
12 |
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
|
13 |
|
14 |
# Create the model with optimized parameters and enhanced system instructions
|
15 |
generation_config = {
|
16 |
-
"temperature": 0.6,
|
17 |
-
"top_p": 0.8,
|
18 |
-
"top_k": 30,
|
19 |
-
"max_output_tokens": 16384,
|
20 |
}
|
21 |
|
22 |
model = genai.GenerativeModel(
|
23 |
model_name="gemini-1.5-pro",
|
24 |
generation_config=generation_config,
|
25 |
system_instruction="""
|
26 |
-
You are Ath, a highly
|
27 |
-
Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions.
|
28 |
"""
|
29 |
)
|
30 |
chat_session = model.start_chat(history=[])
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def generate_response(user_input):
|
33 |
try:
|
34 |
response = chat_session.send_message(user_input)
|
@@ -37,151 +66,129 @@ def generate_response(user_input):
|
|
37 |
return f"Error: {e}"
|
38 |
|
39 |
def optimize_code(code):
|
40 |
-
#
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
with open("temp_code.py", "w") as file:
|
43 |
-
file.write(
|
44 |
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
|
45 |
os.remove("temp_code.py")
|
46 |
-
|
|
|
47 |
|
48 |
def fetch_from_github(query):
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
def interact_with_api(api_url):
|
54 |
-
# Placeholder for interacting with external APIs
|
55 |
response = requests.get(api_url)
|
56 |
return response.json()
|
57 |
|
58 |
def train_ml_model(code_data):
|
59 |
-
# Placeholder for training a machine learning model to predict code improvements
|
60 |
df = pd.DataFrame(code_data)
|
61 |
X = df.drop('target', axis=1)
|
62 |
y = df['target']
|
63 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
64 |
-
model = RandomForestClassifier()
|
65 |
model.fit(X_train, y_train)
|
66 |
return model
|
67 |
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
.
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
}
|
98 |
-
.subtitle {
|
99 |
-
font-size: 1.1rem;
|
100 |
-
text-align: center;
|
101 |
-
color: #4a5568;
|
102 |
-
margin-bottom: 2rem;
|
103 |
-
}
|
104 |
-
.stTextArea textarea {
|
105 |
-
border: 2px solid #e2e8f0;
|
106 |
-
border-radius: 8px;
|
107 |
-
font-size: 1rem;
|
108 |
-
padding: 0.75rem;
|
109 |
-
transition: all 0.3s ease;
|
110 |
-
}
|
111 |
-
.stTextArea textarea:focus {
|
112 |
-
border-color: #4299e1;
|
113 |
-
box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
|
114 |
-
}
|
115 |
-
.stButton button {
|
116 |
-
background-color: #4299e1;
|
117 |
-
color: white;
|
118 |
-
border: none;
|
119 |
-
border-radius: 8px;
|
120 |
-
font-size: 1.1rem;
|
121 |
-
font-weight: 600;
|
122 |
-
padding: 0.75rem 2rem;
|
123 |
-
transition: all 0.3s ease;
|
124 |
-
width: 100%;
|
125 |
-
}
|
126 |
-
.stButton button:hover {
|
127 |
-
background-color: #3182ce;
|
128 |
-
}
|
129 |
-
.output-container {
|
130 |
-
background: #f7fafc;
|
131 |
-
border-radius: 8px;
|
132 |
-
padding: 1rem;
|
133 |
-
margin-top: 2rem;
|
134 |
-
}
|
135 |
-
.code-block {
|
136 |
-
background-color: #2d3748;
|
137 |
-
color: #e2e8f0;
|
138 |
-
font-family: 'Fira Code', monospace;
|
139 |
-
font-size: 0.9rem;
|
140 |
-
border-radius: 8px;
|
141 |
-
padding: 1rem;
|
142 |
-
margin-top: 1rem;
|
143 |
-
overflow-x: auto;
|
144 |
-
}
|
145 |
-
.stAlert {
|
146 |
-
background-color: #ebf8ff;
|
147 |
-
color: #2b6cb0;
|
148 |
-
border-radius: 8px;
|
149 |
-
border: none;
|
150 |
-
padding: 0.75rem 1rem;
|
151 |
-
}
|
152 |
-
.stSpinner {
|
153 |
-
color: #4299e1;
|
154 |
-
}
|
155 |
-
</style>
|
156 |
-
""", unsafe_allow_html=True)
|
157 |
|
158 |
st.markdown('<div class="main-container">', unsafe_allow_html=True)
|
159 |
-
st.title("
|
160 |
-
st.markdown('<p class="subtitle">Powered by Google Gemini</p>', unsafe_allow_html=True)
|
161 |
|
162 |
-
prompt = st.text_area("What code can I help you with today?", height=120)
|
163 |
|
164 |
-
if st.button("Generate Code"):
|
165 |
if prompt.strip() == "":
|
166 |
st.error("Please enter a valid prompt.")
|
167 |
else:
|
168 |
-
with st.spinner("Generating code..."):
|
169 |
completed_text = generate_response(prompt)
|
170 |
if "Error" in completed_text:
|
171 |
st.error(completed_text)
|
172 |
else:
|
173 |
-
optimized_code = optimize_code(completed_text)
|
174 |
-
|
|
|
|
|
175 |
|
176 |
st.markdown('<div class="output-container">', unsafe_allow_html=True)
|
177 |
st.markdown('<div class="code-block">', unsafe_allow_html=True)
|
178 |
st.code(optimized_code)
|
179 |
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
st.markdown('</div>', unsafe_allow_html=True)
|
181 |
|
182 |
st.markdown("""
|
183 |
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
|
184 |
-
|
185 |
</div>
|
186 |
""", unsafe_allow_html=True)
|
187 |
|
|
|
5 |
import os
|
6 |
import pylint
|
7 |
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
from sklearn.model_selection import train_test_split
|
10 |
from sklearn.ensemble import RandomForestClassifier
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.optim as optim
|
14 |
+
from transformers import AutoTokenizer, AutoModel
|
15 |
+
import ast
|
16 |
+
import networkx as nx
|
17 |
+
import matplotlib.pyplot as plt
|
18 |
|
19 |
# Configure the Gemini API
|
20 |
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
|
21 |
|
22 |
# Create the model with optimized parameters and enhanced system instructions
|
23 |
generation_config = {
|
24 |
+
"temperature": 0.6,
|
25 |
+
"top_p": 0.8,
|
26 |
+
"top_k": 30,
|
27 |
+
"max_output_tokens": 16384,
|
28 |
}
|
29 |
|
30 |
model = genai.GenerativeModel(
|
31 |
model_name="gemini-1.5-pro",
|
32 |
generation_config=generation_config,
|
33 |
system_instruction="""
|
34 |
+
You are Ath, a highly advanced code assistant with deep knowledge in AI, machine learning, and software engineering. You provide cutting-edge, optimized, and secure code solutions. Speak casually and use tech jargon when appropriate.
|
|
|
35 |
"""
|
36 |
)
|
37 |
chat_session = model.start_chat(history=[])
|
38 |
|
39 |
+
# Load pre-trained BERT model for code understanding
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
|
41 |
+
codebert_model = AutoModel.from_pretrained("microsoft/codebert-base")
|
42 |
+
|
43 |
+
class CodeImprovement(nn.Module):
|
44 |
+
def __init__(self, input_dim):
|
45 |
+
super(CodeImprovement, self).__init__()
|
46 |
+
self.fc1 = nn.Linear(input_dim, 512)
|
47 |
+
self.fc2 = nn.Linear(512, 256)
|
48 |
+
self.fc3 = nn.Linear(256, 128)
|
49 |
+
self.fc4 = nn.Linear(128, 2) # Binary classification: needs improvement or not
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = torch.relu(self.fc1(x))
|
53 |
+
x = torch.relu(self.fc2(x))
|
54 |
+
x = torch.relu(self.fc3(x))
|
55 |
+
return torch.sigmoid(self.fc4(x))
|
56 |
+
|
57 |
+
code_improvement_model = CodeImprovement(768) # 768 is BERT's output dimension
|
58 |
+
optimizer = optim.Adam(code_improvement_model.parameters())
|
59 |
+
criterion = nn.BCELoss()
|
60 |
+
|
61 |
def generate_response(user_input):
|
62 |
try:
|
63 |
response = chat_session.send_message(user_input)
|
|
|
66 |
return f"Error: {e}"
|
67 |
|
68 |
def optimize_code(code):
|
69 |
+
# Use abstract syntax tree for advanced code analysis
|
70 |
+
tree = ast.parse(code)
|
71 |
+
analyzer = CodeAnalyzer()
|
72 |
+
analyzer.visit(tree)
|
73 |
+
|
74 |
+
# Apply code transformations based on analysis
|
75 |
+
transformer = CodeTransformer(analyzer.get_optimizations())
|
76 |
+
optimized_tree = transformer.visit(tree)
|
77 |
+
|
78 |
+
optimized_code = ast.unparse(optimized_tree)
|
79 |
+
|
80 |
+
# Run pylint for additional suggestions
|
81 |
with open("temp_code.py", "w") as file:
|
82 |
+
file.write(optimized_code)
|
83 |
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
|
84 |
os.remove("temp_code.py")
|
85 |
+
|
86 |
+
return optimized_code, result.stdout
|
87 |
|
88 |
def fetch_from_github(query):
|
89 |
+
headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"}
|
90 |
+
response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers)
|
91 |
+
if response.status_code == 200:
|
92 |
+
return response.json()['items'][:5] # Return top 5 results
|
93 |
+
return []
|
94 |
|
95 |
def interact_with_api(api_url):
|
|
|
96 |
response = requests.get(api_url)
|
97 |
return response.json()
|
98 |
|
99 |
def train_ml_model(code_data):
|
|
|
100 |
df = pd.DataFrame(code_data)
|
101 |
X = df.drop('target', axis=1)
|
102 |
y = df['target']
|
103 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
104 |
+
model = RandomForestClassifier(n_estimators=100, max_depth=10)
|
105 |
model.fit(X_train, y_train)
|
106 |
return model
|
107 |
|
108 |
+
def analyze_code_quality(code):
|
109 |
+
# Tokenize and encode the code
|
110 |
+
inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length")
|
111 |
+
|
112 |
+
# Get BERT embeddings
|
113 |
+
with torch.no_grad():
|
114 |
+
outputs = codebert_model(**inputs)
|
115 |
+
|
116 |
+
# Use the [CLS] token embedding for classification
|
117 |
+
cls_embedding = outputs.last_hidden_state[:, 0, :]
|
118 |
+
|
119 |
+
# Pass through our code improvement model
|
120 |
+
prediction = code_improvement_model(cls_embedding)
|
121 |
+
|
122 |
+
return prediction.item() # Return the probability of needing improvement
|
123 |
|
124 |
+
def visualize_code_structure(code):
|
125 |
+
tree = ast.parse(code)
|
126 |
+
graph = nx.DiGraph()
|
127 |
|
128 |
+
def add_nodes_edges(node, parent=None):
|
129 |
+
node_id = id(node)
|
130 |
+
graph.add_node(node_id, label=type(node).__name__)
|
131 |
+
if parent:
|
132 |
+
graph.add_edge(id(parent), node_id)
|
133 |
+
for child in ast.iter_child_nodes(node):
|
134 |
+
add_nodes_edges(child, node)
|
135 |
+
|
136 |
+
add_nodes_edges(tree)
|
137 |
+
|
138 |
+
plt.figure(figsize=(12, 8))
|
139 |
+
pos = nx.spring_layout(graph)
|
140 |
+
nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=1000, font_size=8, font_weight='bold')
|
141 |
+
labels = nx.get_node_attributes(graph, 'label')
|
142 |
+
nx.draw_networkx_labels(graph, pos, labels, font_size=6)
|
143 |
+
|
144 |
+
return plt
|
145 |
+
|
146 |
+
# Streamlit UI setup
|
147 |
+
st.set_page_config(page_title="Advanced AI Code Assistant", page_icon="π", layout="wide")
|
148 |
+
|
149 |
+
# ... (keep the existing CSS styles) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
st.markdown('<div class="main-container">', unsafe_allow_html=True)
|
152 |
+
st.title("π Advanced AI Code Assistant")
|
153 |
+
st.markdown('<p class="subtitle">Powered by Google Gemini & Deep Learning</p>', unsafe_allow_html=True)
|
154 |
|
155 |
+
prompt = st.text_area("What advanced code task can I help you with today?", height=120)
|
156 |
|
157 |
+
if st.button("Generate Advanced Code"):
|
158 |
if prompt.strip() == "":
|
159 |
st.error("Please enter a valid prompt.")
|
160 |
else:
|
161 |
+
with st.spinner("Generating and analyzing code..."):
|
162 |
completed_text = generate_response(prompt)
|
163 |
if "Error" in completed_text:
|
164 |
st.error(completed_text)
|
165 |
else:
|
166 |
+
optimized_code, lint_results = optimize_code(completed_text)
|
167 |
+
quality_score = analyze_code_quality(optimized_code)
|
168 |
+
|
169 |
+
st.success(f"Code generated and optimized successfully! Quality Score: {quality_score:.2f}")
|
170 |
|
171 |
st.markdown('<div class="output-container">', unsafe_allow_html=True)
|
172 |
st.markdown('<div class="code-block">', unsafe_allow_html=True)
|
173 |
st.code(optimized_code)
|
174 |
st.markdown('</div>', unsafe_allow_html=True)
|
175 |
+
|
176 |
+
with st.expander("View Code Structure Visualization"):
|
177 |
+
st.pyplot(visualize_code_structure(optimized_code))
|
178 |
+
|
179 |
+
with st.expander("View Lint Results"):
|
180 |
+
st.text(lint_results)
|
181 |
+
|
182 |
+
with st.expander("Fetch Similar Code from GitHub"):
|
183 |
+
github_results = fetch_from_github(prompt)
|
184 |
+
for item in github_results:
|
185 |
+
st.markdown(f"[{item['name']}]({item['html_url']})")
|
186 |
+
|
187 |
st.markdown('</div>', unsafe_allow_html=True)
|
188 |
|
189 |
st.markdown("""
|
190 |
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
|
191 |
+
Crafted with π by Your Advanced AI Code Assistant
|
192 |
</div>
|
193 |
""", unsafe_allow_html=True)
|
194 |
|