Artificial-superintelligence commited on
Commit
c059984
·
verified ·
1 Parent(s): cb027fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +469 -210
app.py CHANGED
@@ -6,7 +6,8 @@ import os
6
  import pylint
7
  import pandas as pd
8
  from sklearn.model_selection import train_test_split
9
- from sklearn.ensemble import RandomForestClassifier
 
10
  import git
11
  import spacy
12
  from spacy.lang.en import English
@@ -14,54 +15,58 @@ import boto3
14
  import unittest
15
  import docker
16
  import sympy as sp
17
- from scipy.optimize import minimize
18
  import numpy as np
19
  import matplotlib.pyplot as plt
20
  import seaborn as sns
21
  from IPython.display import display
22
  from tenacity import retry, stop_after_attempt, wait_fixed
23
- from transformers import pipeline
24
- import tensorflow as tf
25
  import torch
26
- import json
27
- import logging
28
-
29
- # Configure logging
30
- logging.basicConfig(level=logging.INFO)
 
 
 
 
 
 
 
 
 
 
31
 
32
  # Configure the Gemini API
33
  genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
34
 
35
  # Create the model with optimized parameters and enhanced system instructions
36
  generation_config = {
37
- "temperature": 0.5, # Lower temperature for more deterministic responses
38
- "top_p": 0.7, # Adjusted for better diversity
39
- "top_k": 40, # Increased for more diverse tokens
40
- "max_output_tokens": 5000, # Increased for longer responses
41
  }
42
 
43
  model = genai.GenerativeModel(
44
  model_name="gemini-1.5-pro",
45
  generation_config=generation_config,
46
  system_instruction="""
47
- You are Ath, a highly knowledgeable and advanced code assistant. Your responses are optimized for secure, high-quality, and cutting-edge code solutions.
48
- Focus on generating code that is efficient, readable, and adheres to best practices. Ensure that the code is well-documented and includes error handling where necessary.
49
  """
50
  )
51
  chat_session = model.start_chat(history=[])
52
 
53
- @retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
54
  def generate_response(user_input):
55
- """Generate a response from the AI model with retry mechanism."""
56
  try:
57
  response = chat_session.send_message(user_input)
58
  return response.text
59
  except Exception as e:
60
- logging.error(f"Error generating response: {e}")
61
  return f"Error: {e}"
62
 
63
  def optimize_code(code):
64
- """Optimize the generated code using static analysis tools."""
65
  with open("temp_code.py", "w") as file:
66
  file.write(code)
67
  result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
@@ -69,32 +74,36 @@ def optimize_code(code):
69
  return code
70
 
71
  def fetch_from_github(query):
72
- """Fetch code snippets from GitHub."""
73
- # Placeholder for fetching code snippets from GitHub
74
- return ""
75
 
76
  def interact_with_api(api_url):
77
- """Interact with external APIs."""
78
  response = requests.get(api_url)
79
  return response.json()
80
 
81
- def train_ml_model(code_data):
82
- """Train a machine learning model to predict code improvements."""
83
- df = pd.DataFrame(code_data)
84
- X = df.drop('target', axis=1)
85
- y = df['target']
86
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
87
- model = RandomForestClassifier()
88
- model.fit(X_train, y_train)
89
- return model
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
  def handle_error(error):
92
- """Handle errors and log them."""
93
- logging.error(f"An error occurred: {error}")
94
  st.error(f"An error occurred: {error}")
 
95
 
96
  def initialize_git_repo(repo_path):
97
- """Initialize or check the existence of a Git repository."""
98
  if not os.path.exists(repo_path):
99
  os.makedirs(repo_path)
100
  if not os.path.exists(os.path.join(repo_path, '.git')):
@@ -104,7 +113,6 @@ def initialize_git_repo(repo_path):
104
  return repo
105
 
106
  def integrate_with_git(repo_path, code):
107
- """Integrate the generated code with a Git repository."""
108
  repo = initialize_git_repo(repo_path)
109
  with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
110
  file.write(code)
@@ -112,19 +120,16 @@ def integrate_with_git(repo_path, code):
112
  repo.index.commit("Added generated code")
113
 
114
  def process_user_input(user_input):
115
- """Process user input using advanced natural language processing."""
116
- nlp = English()
117
  doc = nlp(user_input)
118
  return doc
119
 
120
  def interact_with_cloud_services(service_name, action, params):
121
- """Interact with cloud services using boto3."""
122
  client = boto3.client(service_name)
123
  response = getattr(client, action)(**params)
124
  return response
125
 
126
  def run_tests():
127
- """Run automated tests using unittest."""
128
  tests_dir = os.path.join(os.getcwd(), 'tests')
129
  if not os.path.exists(tests_dir):
130
  os.makedirs(tests_dir)
@@ -139,7 +144,6 @@ def run_tests():
139
  return test_result
140
 
141
  def execute_code_in_docker(code):
142
- """Execute code in a Docker container for safety and isolation."""
143
  client = docker.from_env()
144
  try:
145
  container = client.containers.run(
@@ -152,206 +156,289 @@ def execute_code_in_docker(code):
152
  logs = container.logs().decode('utf-8')
153
  return logs, result['StatusCode']
154
  except Exception as e:
155
- logging.error(f"Error executing code in Docker: {e}")
156
  return f"Error: {e}", 1
157
 
158
- def solve_equation(equation):
159
- """Solve mathematical equations using SymPy."""
160
- x, y = sp.symbols('x y')
161
  eq = sp.Eq(eval(equation))
162
- solution = sp.solve(eq, x)
163
  return solution
164
 
165
- def optimize_function(function, initial_guess):
166
- """Optimize a function using SciPy."""
167
- result = minimize(lambda x: eval(function), initial_guess)
168
- return result.x
169
 
170
- def visualize_data(data):
171
- """Visualize data using Matplotlib and Seaborn."""
172
  df = pd.DataFrame(data)
173
- plt.figure(figsize=(10, 6))
174
- sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
175
- plt.title('Correlation Heatmap')
176
- plt.show()
 
 
 
 
 
 
 
 
 
 
 
 
177
 
178
- def analyze_data(data):
179
- """Perform advanced data analysis using Pandas and NumPy."""
180
  df = pd.DataFrame(data)
181
  summary = df.describe()
182
- return summary
 
 
 
 
 
 
 
 
183
 
184
- def display_dataframe(data):
185
- """Display a DataFrame in a user-friendly format."""
186
- df = pd.DataFrame(data)
187
- display(df)
188
-
189
- def generate_text(prompt):
190
- """Generate text using a pre-trained transformer model."""
191
- generator = pipeline('text-generation', model='gpt2')
192
- result = generator(prompt, max_length=50, num_return_sequences=1)
193
- return result[0]['generated_text']
194
-
195
- def classify_text(text):
196
- """Classify text using a pre-trained transformer model."""
197
- classifier = pipeline('sentiment-analysis')
198
- result = classifier(text)
199
- return result
200
-
201
- def predict_with_tensorflow(model_path, data):
202
- """Make predictions using a TensorFlow model."""
203
- model = tf.keras.models.load_model(model_path)
204
- predictions = model.predict(data)
205
- return predictions
206
-
207
- def predict_with_pytorch(model_path, data):
208
- """Make predictions using a PyTorch model."""
209
- model = torch.load(model_path)
210
- model.eval()
211
- with torch.no_grad():
212
- predictions = model(data)
213
- return predictions
214
-
215
- def load_json_config(config_path):
216
- """Load a JSON configuration file."""
217
- with open(config_path, 'r') as file:
218
- config = json.load(file)
219
- return config
220
 
221
- # Streamlit UI setup
222
- st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="🚀", layout="wide")
223
 
224
- st.markdown("""
225
- <style>
226
- @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;600;700&display=swap');
227
 
228
- body {
229
- font-family: 'Inter', sans-serif;
230
- background-color: #f0f4f8;
231
- color: #1a202c;
232
- }
233
- .stApp {
234
- max-width: 1200px;
235
- margin: 0 auto;
236
- padding: 2rem;
237
- }
238
- .main-container {
239
- background: #ffffff;
240
- border-radius: 16px;
241
- padding: 2rem;
242
- box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
243
- }
244
- h1 {
245
- font-size: 2.5rem;
246
- font-weight: 700;
247
- color: #2d3748;
248
- text-align: center;
249
- margin-bottom: 1rem;
250
- }
251
- .subtitle {
252
- font-size: 1.1rem;
253
- text-align: center;
254
- color: #4a5568;
255
- margin-bottom: 2rem;
256
- }
257
- .stTextArea textarea {
258
- border: 2px solid #e2e8f0;
259
- border-radius: 8px;
260
- font-size: 1rem;
261
- padding: 0.75rem;
262
- transition: all 0.3s ease;
263
- }
264
- .stTextArea textarea:focus {
265
- border-color: #4299e1;
266
- box-shadow: 0 0 0 3px rgba(66, 153, 225, 0.5);
267
- }
268
- .stButton button {
269
- background-color: #4299e1;
270
- color: white;
271
- border: none;
272
- border-radius: 8px;
273
- font-size: 1.1rem;
274
- font-weight: 600;
275
- padding: 0.75rem 2rem;
276
- transition: all 0.3s ease;
277
- width: 100%;
278
- }
279
- .stButton button:hover {
280
- background-color: #3182ce;
281
- }
282
- .output-container {
283
- background: #f7fafc;
284
- border-radius: 8px;
285
- padding: 1rem;
286
- margin-top: 2rem;
287
  }
288
- .code-block {
289
- background-color: #2d3748;
290
- color: #e2e8f0;
291
- font-family: 'Fira Code', monospace;
292
- font-size: 0.9rem;
293
- border-radius: 8px;
294
- padding: 1rem;
295
- margin-top: 1rem;
296
- overflow-x: auto;
 
 
 
 
 
 
 
 
 
 
 
 
297
  }
298
- .stAlert {
299
- background-color: #ebf8ff;
300
- color: #2b6cb0;
301
- border-radius: 8px;
302
- border: none;
303
- padding: 0.75rem 1rem;
 
 
 
304
  }
305
- .stSpinner {
306
- color: #4299e1;
 
 
 
 
 
 
 
 
 
 
 
 
307
  }
308
- </style>
309
- """, unsafe_allow_html=True)
 
 
 
310
 
311
  st.markdown('<div class="main-container">', unsafe_allow_html=True)
312
  st.title("🚀 Ultra AI Code Assistant")
313
- st.markdown('<p class="subtitle">Powered by Google Gemini</p>', unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
314
 
315
- prompt = st.text_area("What code can I help you with today?", height=120)
316
 
317
- if st.button("Generate Code"):
318
  if prompt.strip() == "":
319
  st.error("Please enter a valid prompt.")
320
  else:
321
- with st.spinner("Generating code..."):
322
  try:
323
- processed_input = process_user_input(prompt)
324
- completed_text = generate_response(processed_input.text)
325
- if "Error" in completed_text:
326
- handle_error(completed_text)
327
- else:
328
- optimized_code = optimize_code(completed_text)
329
- st.success("Code generated and optimized successfully!")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
330
 
331
- st.markdown('<div class="output-container">', unsafe_allow_html=True)
332
- st.markdown('<div class="code-block">', unsafe_allow_html=True)
333
- st.code(optimized_code)
334
- st.markdown('</div>', unsafe_allow_html=True)
335
- st.markdown('</div>', unsafe_allow_html=True)
 
 
 
 
 
 
 
336
 
337
- # Integrate with Git
338
- repo_path = "./repo" # Replace with your repository path
339
- integrate_with_git(repo_path, optimized_code)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340
 
341
- # Run automated tests
342
- test_result = run_tests()
343
- if test_result.wasSuccessful():
344
- st.success("All tests passed successfully!")
345
- else:
346
- st.error("Some tests failed. Please check the code.")
347
 
348
- # Execute code in Docker
349
- execution_result, status_code = execute_code_in_docker(optimized_code)
350
- if status_code == 0:
351
- st.success("Code executed successfully in Docker!")
352
- st.text(execution_result)
353
- else:
354
- st.error(f"Code execution failed: {execution_result}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355
  except Exception as e:
356
  handle_error(e)
357
 
@@ -361,4 +448,176 @@ st.markdown("""
361
  </div>
362
  """, unsafe_allow_html=True)
363
 
364
- st.markdown('</div>', unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  import pylint
7
  import pandas as pd
8
  from sklearn.model_selection import train_test_split
9
+ from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
10
+ from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
11
  import git
12
  import spacy
13
  from spacy.lang.en import English
 
15
  import unittest
16
  import docker
17
  import sympy as sp
18
+ from scipy.optimize import minimize, differential_evolution
19
  import numpy as np
20
  import matplotlib.pyplot as plt
21
  import seaborn as sns
22
  from IPython.display import display
23
  from tenacity import retry, stop_after_attempt, wait_fixed
 
 
24
  import torch
25
+ import torch.nn as nn
26
+ import torch.optim as optim
27
+ from transformers import AutoTokenizer, AutoModel
28
+ import networkx as nx
29
+ from sklearn.cluster import KMeans
30
+ from scipy.stats import ttest_ind
31
+ from statsmodels.tsa.arima.model import ARIMA
32
+ import nltk
33
+ from nltk.sentiment import SentimentIntensityAnalyzer
34
+ import cv2
35
+ from PIL import Image
36
+ import tensorflow as tf
37
+ from tensorflow.keras.applications import ResNet50
38
+ from tensorflow.keras.preprocessing import image
39
+ from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
40
 
41
  # Configure the Gemini API
42
  genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
43
 
44
  # Create the model with optimized parameters and enhanced system instructions
45
  generation_config = {
46
+ "temperature": 0.4,
47
+ "top_p": 0.8,
48
+ "top_k": 50,
49
+ "max_output_tokens": 4096,
50
  }
51
 
52
  model = genai.GenerativeModel(
53
  model_name="gemini-1.5-pro",
54
  generation_config=generation_config,
55
  system_instruction="""
56
+ You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains including machine learning, data science, web development, cloud computing, and more. Your responses should showcase cutting-edge techniques, best practices, and innovative solutions.
 
57
  """
58
  )
59
  chat_session = model.start_chat(history=[])
60
 
61
+ @retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
62
  def generate_response(user_input):
 
63
  try:
64
  response = chat_session.send_message(user_input)
65
  return response.text
66
  except Exception as e:
 
67
  return f"Error: {e}"
68
 
69
  def optimize_code(code):
 
70
  with open("temp_code.py", "w") as file:
71
  file.write(code)
72
  result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
 
74
  return code
75
 
76
  def fetch_from_github(query):
77
+ # Implement GitHub API interaction here
78
+ pass
 
79
 
80
  def interact_with_api(api_url):
 
81
  response = requests.get(api_url)
82
  return response.json()
83
 
84
+ def train_advanced_ml_model(X, y):
 
 
 
 
85
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
86
+ models = {
87
+ 'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
88
+ 'Gradient Boosting': GradientBoostingClassifier(n_estimators=100, random_state=42)
89
+ }
90
+ results = {}
91
+ for name, model in models.items():
92
+ model.fit(X_train, y_train)
93
+ y_pred = model.predict(X_test)
94
+ results[name] = {
95
+ 'accuracy': accuracy_score(y_test, y_pred),
96
+ 'precision': precision_score(y_test, y_pred, average='weighted'),
97
+ 'recall': recall_score(y_test, y_pred, average='weighted'),
98
+ 'f1': f1_score(y_test, y_pred, average='weighted')
99
+ }
100
+ return results
101
 
102
  def handle_error(error):
 
 
103
  st.error(f"An error occurred: {error}")
104
+ # Implement advanced error logging and notification system here
105
 
106
  def initialize_git_repo(repo_path):
 
107
  if not os.path.exists(repo_path):
108
  os.makedirs(repo_path)
109
  if not os.path.exists(os.path.join(repo_path, '.git')):
 
113
  return repo
114
 
115
  def integrate_with_git(repo_path, code):
 
116
  repo = initialize_git_repo(repo_path)
117
  with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
118
  file.write(code)
 
120
  repo.index.commit("Added generated code")
121
 
122
  def process_user_input(user_input):
123
+ nlp = spacy.load("en_core_web_sm")
 
124
  doc = nlp(user_input)
125
  return doc
126
 
127
  def interact_with_cloud_services(service_name, action, params):
 
128
  client = boto3.client(service_name)
129
  response = getattr(client, action)(**params)
130
  return response
131
 
132
  def run_tests():
 
133
  tests_dir = os.path.join(os.getcwd(), 'tests')
134
  if not os.path.exists(tests_dir):
135
  os.makedirs(tests_dir)
 
144
  return test_result
145
 
146
  def execute_code_in_docker(code):
 
147
  client = docker.from_env()
148
  try:
149
  container = client.containers.run(
 
156
  logs = container.logs().decode('utf-8')
157
  return logs, result['StatusCode']
158
  except Exception as e:
 
159
  return f"Error: {e}", 1
160
 
161
+ def solve_complex_equation(equation):
162
+ x, y, z = sp.symbols('x y z')
 
163
  eq = sp.Eq(eval(equation))
164
+ solution = sp.solve(eq)
165
  return solution
166
 
167
+ def advanced_optimization(function, bounds):
168
+ result = differential_evolution(lambda x: eval(function), bounds)
169
+ return result.x, result.fun
 
170
 
171
+ def visualize_complex_data(data):
 
172
  df = pd.DataFrame(data)
173
+ fig, axs = plt.subplots(2, 2, figsize=(16, 12))
174
+
175
+ sns.heatmap(df.corr(), annot=True, cmap='coolwarm', ax=axs[0, 0])
176
+ axs[0, 0].set_title('Correlation Heatmap')
177
+
178
+ sns.pairplot(df, diag_kind='kde', ax=axs[0, 1])
179
+ axs[0, 1].set_title('Pairplot')
180
+
181
+ df.plot(kind='box', ax=axs[1, 0])
182
+ axs[1, 0].set_title('Box Plot')
183
+
184
+ sns.violinplot(data=df, ax=axs[1, 1])
185
+ axs[1, 1].set_title('Violin Plot')
186
+
187
+ plt.tight_layout()
188
+ return fig
189
 
190
+ def analyze_complex_data(data):
 
191
  df = pd.DataFrame(data)
192
  summary = df.describe()
193
+ correlation = df.corr()
194
+ skewness = df.skew()
195
+ kurtosis = df.kurtosis()
196
+ return {
197
+ 'summary': summary,
198
+ 'correlation': correlation,
199
+ 'skewness': skewness,
200
+ 'kurtosis': kurtosis
201
+ }
202
 
203
+ def train_deep_learning_model(X, y):
204
+ class DeepNN(nn.Module):
205
+ def __init__(self, input_size):
206
+ super(DeepNN, self).__init__()
207
+ self.fc1 = nn.Linear(input_size, 64)
208
+ self.fc2 = nn.Linear(64, 32)
209
+ self.fc3 = nn.Linear(32, 1)
210
+
211
+ def forward(self, x):
212
+ x = torch.relu(self.fc1(x))
213
+ x = torch.relu(self.fc2(x))
214
+ x = torch.sigmoid(self.fc3(x))
215
+ return x
216
+
217
+ X_tensor = torch.FloatTensor(X.values)
218
+ y_tensor = torch.FloatTensor(y.values)
219
+
220
+ model = DeepNN(X.shape[1])
221
+ criterion = nn.BCELoss()
222
+ optimizer = optim.Adam(model.parameters())
223
+
224
+ epochs = 100
225
+ for epoch in range(epochs):
226
+ optimizer.zero_grad()
227
+ outputs = model(X_tensor)
228
+ loss = criterion(outputs, y_tensor.unsqueeze(1))
229
+ loss.backward()
230
+ optimizer.step()
 
 
 
 
 
 
 
 
231
 
232
+ return model
 
233
 
234
+ def perform_nlp_analysis(text):
235
+ nlp = spacy.load("en_core_web_sm")
236
+ doc = nlp(text)
237
 
238
+ entities = [(ent.text, ent.label_) for ent in doc.ents]
239
+ tokens = [token.text for token in doc]
240
+ pos_tags = [(token.text, token.pos_) for token in doc]
241
+
242
+ sia = SentimentIntensityAnalyzer()
243
+ sentiment = sia.polarity_scores(text)
244
+
245
+ return {
246
+ 'entities': entities,
247
+ 'tokens': tokens,
248
+ 'pos_tags': pos_tags,
249
+ 'sentiment': sentiment
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250
  }
251
+
252
+ def perform_image_analysis(image_path):
253
+ img = cv2.imread(image_path)
254
+ img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
255
+
256
+ # Perform object detection
257
+ model = ResNet50(weights='imagenet')
258
+ img_resized = cv2.resize(img_rgb, (224, 224))
259
+ img_array = image.img_to_array(img_resized)
260
+ img_array = np.expand_dims(img_array, axis=0)
261
+ img_array = preprocess_input(img_array)
262
+
263
+ predictions = model.predict(img_array)
264
+ decoded_predictions = decode_predictions(predictions, top=3)[0]
265
+
266
+ # Perform edge detection
267
+ edges = cv2.Canny(img, 100, 200)
268
+
269
+ return {
270
+ 'predictions': decoded_predictions,
271
+ 'edges': edges
272
  }
273
+
274
+ def perform_time_series_analysis(data):
275
+ df = pd.DataFrame(data)
276
+ model = ARIMA(df, order=(1, 1, 1))
277
+ results = model.fit()
278
+ forecast = results.forecast(steps=5)
279
+ return {
280
+ 'model_summary': results.summary(),
281
+ 'forecast': forecast
282
  }
283
+
284
+ def perform_graph_analysis(nodes, edges):
285
+ G = nx.Graph()
286
+ G.add_nodes_from(nodes)
287
+ G.add_edges_from(edges)
288
+
289
+ centrality = nx.degree_centrality(G)
290
+ clustering = nx.clustering(G)
291
+ shortest_paths = dict(nx.all_pairs_shortest_path_length(G))
292
+
293
+ return {
294
+ 'centrality': centrality,
295
+ 'clustering': clustering,
296
+ 'shortest_paths': shortest_paths
297
  }
298
+
299
+ # Streamlit UI setup
300
+ st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="🚀", layout="wide")
301
+
302
+ # ... (Keep the existing CSS styles)
303
 
304
  st.markdown('<div class="main-container">', unsafe_allow_html=True)
305
  st.title("🚀 Ultra AI Code Assistant")
306
+ st.markdown('<p class="subtitle">Powered by Advanced AI and Domain Expertise</p>', unsafe_allow_html=True)
307
+
308
+ task_type = st.selectbox("Select Task Type", [
309
+ "Code Generation",
310
+ "Machine Learning",
311
+ "Data Analysis",
312
+ "Natural Language Processing",
313
+ "Image Analysis",
314
+ "Time Series Analysis",
315
+ "Graph Analysis"
316
+ ])
317
 
318
+ prompt = st.text_area("Enter your task description or code:", height=120)
319
 
320
+ if st.button("Execute Task"):
321
  if prompt.strip() == "":
322
  st.error("Please enter a valid prompt.")
323
  else:
324
+ with st.spinner("Processing your request..."):
325
  try:
326
+ if task_type == "Code Generation":
327
+ processed_input = process_user_input(prompt)
328
+ completed_text = generate_response(processed_input.text)
329
+ if "Error" in completed_text:
330
+ handle_error(completed_text)
331
+ else:
332
+ optimized_code = optimize_code(completed_text)
333
+ st.success("Code generated and optimized successfully!")
334
+
335
+ st.markdown('<div class="output-container">', unsafe_allow_html=True)
336
+ st.markdown('<div class="code-block">', unsafe_allow_html=True)
337
+ st.code(optimized_code)
338
+ st.markdown('</div>', unsafe_allow_html=True)
339
+ st.markdown('</div>', unsafe_allow_html=True)
340
+
341
+ repo_path = "./repo"
342
+ integrate_with_git(repo_path, optimized_code)
343
+
344
+ test_result = run_tests()
345
+ if test_result.wasSuccessful():
346
+ st.success("All tests passed successfully!")
347
+ else:
348
+ st.error("Some tests failed. Please check the code.")
349
+
350
+ execution_result, status_code = execute_code_in_docker(optimized_code)
351
+ if status_code == 0:
352
+ st.success("Code executed successfully in Docker!")
353
+ st.text(execution_result)
354
+ else:
355
+ st.error(f"Code execution failed: {execution_result}")
356
+
357
+ elif task_type == "Machine Learning":
358
+ # For demonstration, we'll use a sample dataset
359
+ from sklearn.datasets import make_classification
360
+ X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
361
+ results = train_advanced_ml_model(X, y)
362
+ st.write("Machine Learning Model Performance:")
363
+ st.json(results)
364
 
365
+ st.write("Deep Learning Model:")
366
+ deep_model = train_deep_learning_model(pd.DataFrame(X), pd.Series(y))
367
+ st.write(deep_model)
368
+
369
+ elif task_type == "Data Analysis":
370
+ # For demonstration, we'll use a sample dataset
371
+ data = pd.DataFrame(np.random.randn(100, 5), columns=['A', 'B', 'C', 'D', 'E'])
372
+ analysis_results = analyze_complex_data(data)
373
+ st.write("Data Analysis Results:")
374
+ st.write(analysis_results['summary'])
375
+ st.write("Correlation Matrix:")
376
+ st.write(analysis_results['correlation'])
377
 
378
+ fig = visualize_complex_data(data)
379
+ st.pyplot(fig)
380
+
381
+ elif task_type == "Natural Language Processing":
382
+ nlp_results = perform_nlp_analysis(prompt)
383
+ st.write("NLP Analysis Results:")
384
+ st.json(nlp_results)
385
+ elif task_type == "Image Analysis":
386
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
387
+ if uploaded_file is not None:
388
+ image = Image.open(uploaded_file)
389
+ st.image(image, caption='Uploaded Image', use_column_width=True)
390
+
391
+ # Save the uploaded image temporarily
392
+ with open("temp_image.jpg", "wb") as f:
393
+ f.write(uploaded_file.getbuffer())
394
+
395
+ analysis_results = perform_image_analysis("temp_image.jpg")
396
+
397
+ st.write("Image Analysis Results:")
398
+ st.write("Top 3 predictions:")
399
+ for i, (imagenet_id, label, score) in enumerate(analysis_results['predictions']):
400
+ st.write(f"{i + 1}: {label} ({score:.2f})")
401
+
402
+ st.write("Edge Detection:")
403
+ st.image(analysis_results['edges'], caption='Edge Detection', use_column_width=True)
404
+
405
+ # Remove the temporary image file
406
+ os.remove("temp_image.jpg")
407
+
408
+ elif task_type == "Time Series Analysis":
409
+ # For demonstration, we'll use a sample time series dataset
410
+ dates = pd.date_range(start='1/1/2020', end='1/1/2021', freq='D')
411
+ values = np.random.randn(len(dates)).cumsum()
412
+ ts_data = pd.Series(values, index=dates)
413
 
414
+ st.line_chart(ts_data)
 
 
 
 
 
415
 
416
+ analysis_results = perform_time_series_analysis(ts_data)
417
+ st.write("Time Series Analysis Results:")
418
+ st.write(analysis_results['model_summary'])
419
+ st.write("Forecast for the next 5 periods:")
420
+ st.write(analysis_results['forecast'])
421
+
422
+ elif task_type == "Graph Analysis":
423
+ # For demonstration, we'll use a sample graph
424
+ nodes = range(1, 11)
425
+ edges = [(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (5, 9), (6, 10)]
426
+
427
+ analysis_results = perform_graph_analysis(nodes, edges)
428
+ st.write("Graph Analysis Results:")
429
+ st.write("Centrality:")
430
+ st.json(analysis_results['centrality'])
431
+ st.write("Clustering Coefficient:")
432
+ st.json(analysis_results['clustering'])
433
+
434
+ # Visualize the graph
435
+ G = nx.Graph()
436
+ G.add_nodes_from(nodes)
437
+ G.add_edges_from(edges)
438
+ fig, ax = plt.subplots(figsize=(10, 8))
439
+ nx.draw(G, with_labels=True, node_color='lightblue', node_size=500, font_size=16, font_weight='bold', ax=ax)
440
+ st.pyplot(fig)
441
+
442
  except Exception as e:
443
  handle_error(e)
444
 
 
448
  </div>
449
  """, unsafe_allow_html=True)
450
 
451
+ st.markdown('</div>', unsafe_allow_html=True)
452
+
453
+ # Additional helper functions
454
+
455
+ def explain_code(code):
456
+ """Generate an explanation for the given code using NLP techniques."""
457
+ explanation = generate_response(f"Explain the following code:\n\n{code}")
458
+ return explanation
459
+
460
+ def generate_unit_tests(code):
461
+ """Generate unit tests for the given code."""
462
+ unit_tests = generate_response(f"Generate unit tests for the following code:\n\n{code}")
463
+ return unit_tests
464
+
465
+ def suggest_optimizations(code):
466
+ """Suggest optimizations for the given code."""
467
+ optimizations = generate_response(f"Suggest optimizations for the following code:\n\n{code}")
468
+ return optimizations
469
+
470
+ def generate_documentation(code):
471
+ """Generate documentation for the given code."""
472
+ documentation = generate_response(f"Generate documentation for the following code:\n\n{code}")
473
+ return documentation
474
+
475
+ # Add these new functions to the Streamlit UI
476
+ if task_type == "Code Generation":
477
+ st.sidebar.header("Code Analysis Tools")
478
+ if st.sidebar.button("Explain Code"):
479
+ explanation = explain_code(optimized_code)
480
+ st.sidebar.subheader("Code Explanation")
481
+ st.sidebar.write(explanation)
482
+
483
+ if st.sidebar.button("Generate Unit Tests"):
484
+ unit_tests = generate_unit_tests(optimized_code)
485
+ st.sidebar.subheader("Generated Unit Tests")
486
+ st.sidebar.code(unit_tests)
487
+
488
+ if st.sidebar.button("Suggest Optimizations"):
489
+ optimizations = suggest_optimizations(optimized_code)
490
+ st.sidebar.subheader("Suggested Optimizations")
491
+ st.sidebar.write(optimizations)
492
+
493
+ if st.sidebar.button("Generate Documentation"):
494
+ documentation = generate_documentation(optimized_code)
495
+ st.sidebar.subheader("Generated Documentation")
496
+ st.sidebar.write(documentation)
497
+
498
+ # Add more advanced features
499
+ def perform_security_analysis(code):
500
+ """Perform a basic security analysis on the given code."""
501
+ security_analysis = generate_response(f"Perform a security analysis on the following code and suggest improvements:\n\n{code}")
502
+ return security_analysis
503
+
504
+ def generate_api_documentation(code):
505
+ """Generate API documentation for the given code."""
506
+ api_docs = generate_response(f"Generate API documentation for the following code:\n\n{code}")
507
+ return api_docs
508
+
509
+ def suggest_design_patterns(code):
510
+ """Suggest appropriate design patterns for the given code."""
511
+ design_patterns = generate_response(f"Suggest appropriate design patterns for the following code:\n\n{code}")
512
+ return design_patterns
513
+
514
+ # Add these new functions to the Streamlit UI
515
+ if task_type == "Code Generation":
516
+ st.sidebar.header("Advanced Code Analysis")
517
+ if st.sidebar.button("Security Analysis"):
518
+ security_analysis = perform_security_analysis(optimized_code)
519
+ st.sidebar.subheader("Security Analysis")
520
+ st.sidebar.write(security_analysis)
521
+
522
+ if st.sidebar.button("Generate API Documentation"):
523
+ api_docs = generate_api_documentation(optimized_code)
524
+ st.sidebar.subheader("API Documentation")
525
+ st.sidebar.write(api_docs)
526
+
527
+ if st.sidebar.button("Suggest Design Patterns"):
528
+ design_patterns = suggest_design_patterns(optimized_code)
529
+ st.sidebar.subheader("Suggested Design Patterns")
530
+ st.sidebar.write(design_patterns)
531
+
532
+ # Add a feature to generate a complete project structure
533
+ def generate_project_structure(project_description):
534
+ """Generate a complete project structure based on the given description."""
535
+ project_structure = generate_response(f"Generate a complete project structure for the following project description:\n\n{project_description}")
536
+ return project_structure
537
+
538
+ # Add this new function to the Streamlit UI
539
+ if st.sidebar.button("Generate Project Structure"):
540
+ project_description = st.sidebar.text_area("Enter project description:")
541
+ if project_description:
542
+ project_structure = generate_project_structure(project_description)
543
+ st.sidebar.subheader("Generated Project Structure")
544
+ st.sidebar.code(project_structure)
545
+
546
+ # Add a feature to suggest relevant libraries and frameworks
547
+ def suggest_libraries(code):
548
+ """Suggest relevant libraries and frameworks for the given code."""
549
+ suggestions = generate_response(f"Suggest relevant libraries and frameworks for the following code:\n\n{code}")
550
+ return suggestions
551
+
552
+ # Add this new function to the Streamlit UI
553
+ if task_type == "Code Generation":
554
+ if st.sidebar.button("Suggest Libraries"):
555
+ library_suggestions = suggest_libraries(optimized_code)
556
+ st.sidebar.subheader("Suggested Libraries and Frameworks")
557
+ st.sidebar.write(library_suggestions)
558
+
559
+ # Add a feature to generate code in multiple programming languages
560
+ def translate_code(code, target_language):
561
+ """Translate the given code to the specified target language."""
562
+ translated_code = generate_response(f"Translate the following code to {target_language}:\n\n{code}")
563
+ return translated_code
564
+
565
+ # Add this new function to the Streamlit UI
566
+ if task_type == "Code Generation":
567
+ target_language = st.sidebar.selectbox("Select target language for translation", ["Python", "JavaScript", "Java", "C++", "Go"])
568
+ if st.sidebar.button("Translate Code"):
569
+ translated_code = translate_code(optimized_code, target_language)
570
+ st.sidebar.subheader(f"Translated Code ({target_language})")
571
+ st.sidebar.code(translated_code)
572
+
573
+ # Add a feature to generate a README file for the project
574
+ def generate_readme(project_description, code):
575
+ """Generate a README file for the project based on the description and code."""
576
+ readme_content = generate_response(f"Generate a README.md file for the following project:\n\nDescription: {project_description}\n\nCode:\n{code}")
577
+ return readme_content
578
+
579
+ # Add this new function to the Streamlit UI
580
+ if task_type == "Code Generation":
581
+ if st.sidebar.button("Generate README"):
582
+ project_description = st.sidebar.text_area("Enter project description:")
583
+ if project_description:
584
+ readme_content = generate_readme(project_description, optimized_code)
585
+ st.sidebar.subheader("Generated README.md")
586
+ st.sidebar.markdown(readme_content)
587
+
588
+ # Add a feature to suggest code refactoring
589
+ def suggest_refactoring(code):
590
+ """Suggest code refactoring improvements for the given code."""
591
+ refactoring_suggestions = generate_response(f"Suggest code refactoring improvements for the following code:\n\n{code}")
592
+ return refactoring_suggestions
593
+
594
+ # Add this new function to the Streamlit UI
595
+ if task_type == "Code Generation":
596
+ if st.sidebar.button("Suggest Refactoring"):
597
+ refactoring_suggestions = suggest_refactoring(optimized_code)
598
+ st.sidebar.subheader("Refactoring Suggestions")
599
+ st.sidebar.write(refactoring_suggestions)
600
+
601
+ # Add a feature to generate sample test data
602
+ def generate_test_data(code):
603
+ """Generate sample test data for the given code."""
604
+ test_data = generate_response(f"Generate sample test data for the following code:\n\n{code}")
605
+ return test_data
606
+
607
+ # Add this new function to the Streamlit UI
608
+ if task_type == "Code Generation":
609
+ if st.sidebar.button("Generate Test Data"):
610
+ test_data = generate_test_data(optimized_code)
611
+ st.sidebar.subheader("Generated Test Data")
612
+ st.sidebar.code(test_data)
613
+
614
+ # Main execution
615
+ if __name__ == "__main__":
616
+ st.sidebar.header("About")
617
+ st.sidebar.info("This Ultra AI Code Assistant is powered by advanced AI models and incorporates expertise across multiple domains including software development, machine learning, data analysis, and more.")
618
+
619
+ st.sidebar.header("Feedback")
620
+ feedback = st.sidebar.text_area("Please provide any feedback or suggestions:")
621
+ if st.sidebar.button("Submit Feedback"):
622
+ # Here you would typically send this feedback to a database or email
623
+ st.sidebar.success("Thank you for your feedback!")