import streamlit as st
import google.generativeai as genai
import requests
import subprocess
import os
import pylint.epylint as lint
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
# Configure the Gemini API
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
# Create the model with optimized parameters and enhanced system instructions
generation_config = {
"temperature": 0.6, # Lower temperature for more deterministic responses
"top_p": 0.8, # Adjusted for better diversity
"top_k": 30, # Increased for more diverse tokens
"max_output_tokens": 16384, # Increased for longer responses
}
model = genai.GenerativeModel(
model_name="gemini-1.5-pro",
generation_config=generation_config,
system_instruction="""
You are Ath, a highly knowledgeable code assistant. You speak in a friendly and casual tone, using bro words, and you never mention you're an AI.
Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions.
"""
)
chat_session = model.start_chat(history=[])
def generate_response(user_input):
try:
response = chat_session.send_message(user_input)
return response.text
except Exception as e:
return f"Error: {e}"
def optimize_code(code):
# Placeholder for advanced code optimization logic
# This could involve using external tools or libraries for static analysis and optimization
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
return code
def fetch_from_github(query):
# Placeholder for fetching code snippets from GitHub
# This could involve using the GitHub API to search for relevant code
return ""
def interact_with_api(api_url):
# Placeholder for interacting with external APIs
response = requests.get(api_url)
return response.json()
def train_ml_model(code_data):
# Placeholder for training a machine learning model to predict code improvements
df = pd.DataFrame(code_data)
X = df.drop('target', axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = RandomForestClassifier()
model.fit(X_train, y_train)
return model
# Streamlit UI setup
st.set_page_config(page_title="Sleek AI Code Assistant", page_icon="💻", layout="wide")
st.markdown("""
""", unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
st.title("💻 Sleek AI Code Assistant")
st.markdown('
Powered by Google Gemini
', unsafe_allow_html=True)
prompt = st.text_area("What code can I help you with today?", height=120)
if st.button("Generate Code"):
if prompt.strip() == "":
st.error("Please enter a valid prompt.")
else:
with st.spinner("Generating code..."):
completed_text = generate_response(prompt)
if "Error" in completed_text:
st.error(completed_text)
else:
optimized_code = optimize_code(completed_text)
st.success("Code generated and optimized successfully!")
st.markdown('
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
st.code(optimized_code)
st.markdown('
', unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
st.markdown("""
Created with ❤️ by Your Sleek AI Code Assistant
""", unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)