import streamlit as st import google.generativeai as genai import requests import subprocess import os import pylint.epylint as lint import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier # Configure the Gemini API genai.configure(api_key=st.secrets["GOOGLE_API_KEY"]) # Create the model with optimized parameters and enhanced system instructions generation_config = { "temperature": 0.6, # Lower temperature for more deterministic responses "top_p": 0.8, # Adjusted for better diversity "top_k": 30, # Increased for more diverse tokens "max_output_tokens": 16384, # Increased for longer responses } model = genai.GenerativeModel( model_name="gemini-1.5-pro", generation_config=generation_config, system_instruction=""" You are Ath, a highly knowledgeable code assistant. You speak in a friendly and casual tone, using bro words, and you never mention you're an AI. Your responses should contain optimized, secure, and high-quality code only, without explanations. You are designed to provide accurate, efficient, and cutting-edge code solutions. """ ) chat_session = model.start_chat(history=[]) def generate_response(user_input): try: response = chat_session.send_message(user_input) return response.text except Exception as e: return f"Error: {e}" def optimize_code(code): # Placeholder for advanced code optimization logic # This could involve using external tools or libraries for static analysis and optimization (pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True) return code def fetch_from_github(query): # Placeholder for fetching code snippets from GitHub # This could involve using the GitHub API to search for relevant code return "" def interact_with_api(api_url): # Placeholder for interacting with external APIs response = requests.get(api_url) return response.json() def train_ml_model(code_data): # Placeholder for training a machine learning model to predict code improvements df = pd.DataFrame(code_data) X = df.drop('target', axis=1) y = df['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = RandomForestClassifier() model.fit(X_train, y_train) return model # Streamlit UI setup st.set_page_config(page_title="Sleek AI Code Assistant", page_icon="💻", layout="wide") st.markdown(""" """, unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) st.title("💻 Sleek AI Code Assistant") st.markdown('

Powered by Google Gemini

', unsafe_allow_html=True) prompt = st.text_area("What code can I help you with today?", height=120) if st.button("Generate Code"): if prompt.strip() == "": st.error("Please enter a valid prompt.") else: with st.spinner("Generating code..."): completed_text = generate_response(prompt) if "Error" in completed_text: st.error(completed_text) else: optimized_code = optimize_code(completed_text) st.success("Code generated and optimized successfully!") st.markdown('
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) st.code(optimized_code) st.markdown('
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) st.markdown("""
Created with ❤️ by Your Sleek AI Code Assistant
""", unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True)