import streamlit as st import google.generativeai as genai import requests import subprocess import os import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score import torch import torch.nn as nn import torch.optim as optim from transformers import AutoTokenizer, AutoModel, pipeline, GPT2LMHeadModel, GPT2Tokenizer import ast import networkx as nx import matplotlib.pyplot as plt import re import javalang import clang.cindex import radon.metrics as radon_metrics import radon.complexity as radon_complexity import black import isort import autopep8 from typing import List, Dict, Any import joblib from fastapi import FastAPI from pydantic import BaseModel import uvicorn # Configure the Gemini API genai.configure(api_key=st.secrets["GOOGLE_API_KEY"]) # Create the model with optimized parameters and enhanced system instructions generation_config = { "temperature": 0.7, "top_p": 0.9, "top_k": 40, "max_output_tokens": 32768, } model = genai.GenerativeModel( model_name="gemini-1.5-pro", generation_config=generation_config, system_instruction=""" You are Ath, an extremely advanced code assistant with deep expertise in AI, machine learning, software engineering, and multiple programming languages. You provide cutting-edge, optimized, and secure code solutions across various domains. Use your vast knowledge to generate high-quality code, perform advanced analyses, and offer insightful optimizations. Adapt your language and explanations based on the user's expertise level. Incorporate the latest advancements in AI and software development to provide state-of-the-art solutions. """ ) chat_session = model.start_chat(history=[]) # Load pre-trained models for code understanding and generation tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base") codebert_model = AutoModel.from_pretrained("microsoft/codebert-base") code_generation_model = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B") # Load GPT-2 for more advanced text generation gpt2_model = GPT2LMHeadModel.from_pretrained("gpt2-large") gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large") class AdvancedCodeImprovement(nn.Module): def __init__(self, input_dim): super(AdvancedCodeImprovement, self).__init__() self.lstm = nn.LSTM(input_dim, 512, num_layers=2, batch_first=True, bidirectional=True) self.attention = nn.MultiheadAttention(1024, 8) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 128) self.fc4 = nn.Linear(128, 64) self.fc5 = nn.Linear(64, 32) self.fc6 = nn.Linear(32, 8) # Extended classification: style, efficiency, security, maintainability, scalability, readability, testability, modularity def forward(self, x): x, _ = self.lstm(x) x, _ = self.attention(x, x, x) x = x.mean(dim=1) # Global average pooling x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = torch.relu(self.fc3(x)) x = torch.relu(self.fc4(x)) x = torch.relu(self.fc5(x)) return torch.sigmoid(self.fc6(x)) code_improvement_model = AdvancedCodeImprovement(768) # 768 is BERT's output dimension optimizer = optim.Adam(code_improvement_model.parameters()) criterion = nn.BCELoss() # Load pre-trained code improvement model if os.path.exists("code_improvement_model.pth"): code_improvement_model.load_state_dict(torch.load("code_improvement_model.pth")) code_improvement_model.eval() def generate_response(user_input: str) -> str: try: response = chat_session.send_message(user_input) return response.text except Exception as e: return f"Error in generating response: {str(e)}" def detect_language(code: str) -> str: # Enhanced language detection with more specific patterns patterns = { 'python': r'\b(def|class|import|from|if\s+__name__\s*==\s*[\'"]__main__[\'"])\b', 'javascript': r'\b(function|var|let|const|=>|document\.getElementById)\b', 'java': r'\b(public\s+class|private|protected|package|import\s+java)\b', 'c++': r'\b(#include\s*<|using\s+namespace|template\s*<|std::)', 'ruby': r'\b(def|class|module|require|attr_accessor)\b', 'go': r'\b(func|package\s+main|import\s*\(|fmt\.Println)\b', 'rust': r'\b(fn|let\s+mut|impl|pub\s+struct|use\s+std)\b', 'typescript': r'\b(interface|type|namespace|readonly|abstract\s+class)\b', } for lang, pattern in patterns.items(): if re.search(pattern, code): return lang return 'unknown' def validate_and_fix_code(code: str, language: str) -> tuple[str, str]: if language == 'python': try: fixed_code = autopep8.fix_code(code) fixed_code = isort.SortImports(file_contents=fixed_code).output fixed_code = black.format_str(fixed_code, mode=black.FileMode()) return fixed_code, "" except Exception as e: return code, f"Error in fixing Python code: {str(e)}" elif language == 'javascript': # Use a JS beautifier (placeholder) return code, "" elif language == 'java': # Use a Java formatter (placeholder) return code, "" elif language == 'c++': # Use a C++ formatter (placeholder) return code, "" else: return code, "" def optimize_code(code: str) -> tuple[str, str]: language = detect_language(code) fixed_code, fix_error = validate_and_fix_code(code, language) if fix_error: return fixed_code, fix_error if language == 'python': try: tree = ast.parse(fixed_code) # Perform advanced Python-specific optimizations optimizer = PythonCodeOptimizer() optimized_tree = optimizer.visit(tree) optimized_code = ast.unparse(optimized_tree) except SyntaxError as e: return fixed_code, f"SyntaxError: {str(e)}" elif language == 'java': try: tree = javalang.parse.parse(fixed_code) # Perform Java-specific optimizations optimizer = JavaCodeOptimizer() optimized_code = optimizer.optimize(tree) except javalang.parser.JavaSyntaxError as e: return fixed_code, f"JavaSyntaxError: {str(e)}" elif language == 'c++': try: index = clang.cindex.Index.create() tu = index.parse('temp.cpp', args=['-std=c++14'], unsaved_files=[('temp.cpp', fixed_code)]) # Perform C++-specific optimizations optimizer = CppCodeOptimizer() optimized_code = optimizer.optimize(tu) except Exception as e: return fixed_code, f"C++ Parsing Error: {str(e)}" else: optimized_code = fixed_code # For unsupported languages, return the fixed code # Run language-specific linter lint_results = run_linter(optimized_code, language) return optimized_code, lint_results def run_linter(code: str, language: str) -> str: if language == 'python': with open("temp_code.py", "w") as file: file.write(code) result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True) os.remove("temp_code.py") return result.stdout elif language == 'javascript': # Run ESLint (placeholder) return "JavaScript linting not implemented" elif language == 'java': # Run CheckStyle (placeholder) return "Java linting not implemented" elif language == 'c++': # Run cppcheck (placeholder) return "C++ linting not implemented" else: return "Linting not available for the detected language" def fetch_from_github(query: str) -> List[Dict[str, Any]]: headers = {"Authorization": f"token {st.secrets['GITHUB_TOKEN']}"} response = requests.get(f"https://api.github.com/search/code?q={query}", headers=headers) if response.status_code == 200: return response.json()['items'][:5] # Return top 5 results return [] def analyze_code_quality(code: str) -> Dict[str, float]: inputs = tokenizer(code, return_tensors="pt", truncation=True, max_length=512, padding="max_length") with torch.no_grad(): outputs = codebert_model(**inputs) cls_embedding = outputs.last_hidden_state[:, 0, :] predictions = code_improvement_model(cls_embedding) quality_scores = { "style": predictions[0][0].item(), "efficiency": predictions[0][1].item(), "security": predictions[0][2].item(), "maintainability": predictions[0][3].item(), "scalability": predictions[0][4].item(), "readability": predictions[0][5].item(), "testability": predictions[0][6].item(), "modularity": predictions[0][7].item() } # Calculate additional metrics language = detect_language(code) if language == 'python': complexity = radon_complexity.cc_visit(code) maintainability = radon_metrics.mi_visit(code, True) quality_scores["cyclomatic_complexity"] = complexity[0].complexity if complexity else 0 quality_scores["maintainability_index"] = maintainability return quality_scores def visualize_code_structure(code: str) -> plt.Figure: try: tree = ast.parse(code) graph = nx.DiGraph() def add_nodes_edges(node, parent=None): node_id = id(node) graph.add_node(node_id, label=f"{type(node).__name__}\n{ast.unparse(node)[:20]}") if parent: graph.add_edge(id(parent), node_id) for child in ast.iter_child_nodes(node): add_nodes_edges(child, node) add_nodes_edges(tree) plt.figure(figsize=(15, 10)) pos = nx.spring_layout(graph, k=0.9, iterations=50) nx.draw(graph, pos, with_labels=True, node_color='lightblue', node_size=2000, font_size=8, font_weight='bold', arrows=True) labels = nx.get_node_attributes(graph, 'label') nx.draw_networkx_labels(graph, pos, labels, font_size=6) return plt except SyntaxError: return None def suggest_improvements(code: str, quality_scores: Dict[str, float]) -> List[str]: suggestions = [] thresholds = { "style": 0.7, "efficiency": 0.7, "security": 0.8, "maintainability": 0.7, "scalability": 0.7, "readability": 0.7, "testability": 0.7, "modularity": 0.7 } for metric, threshold in thresholds.items(): if quality_scores[metric] < threshold: suggestions.append(f"Consider improving code {metric} (current score: {quality_scores[metric]:.2f}).") if "cyclomatic_complexity" in quality_scores and quality_scores["cyclomatic_complexity"] > 10: suggestions.append(f"Consider breaking down complex functions to reduce cyclomatic complexity (current: {quality_scores['cyclomatic_complexity']}).") return suggestions # New function for advanced code generation using GPT-2 def generate_advanced_code(prompt: str, language: str) -> str: input_text = f"Generate {language} code for: {prompt}\n\n" input_ids = gpt2_tokenizer.encode(input_text, return_tensors="pt") output = gpt2_model.generate( input_ids, max_length=1000, num_return_sequences=1, no_repeat_ngram_size=2, top_k=50, top_p=0.95, temperature=0.7 ) generated_code = gpt2_tokenizer.decode(output[0], skip_special_tokens=True) return generated_code.split("\n\n", 1)[1] # Remove the input prompt from the generated text # New function for code similarity analysis def analyze_code_similarity(code1: str, code2: str) -> float: tokens1 = tokenizer.tokenize(code1) tokens2 = tokenizer.tokenize(code2) # Use Jaccard similarity for token-based comparison set1 = set(tokens1) set2 = set(tokens2) similarity = len(set1.intersection(set2)) / len(set1.union(set2)) return similarity # New function for code performance estimation def estimate_code_performance(code: str) -> Dict[str, Any]: language = detect_language(code) if language == 'python': # Use abstract syntax tree to estimate time complexity tree = ast.parse(code) analyzer = ComplexityAnalyzer() analyzer.visit(tree) return { "time_complexity": analyzer.time_complexity, "space_complexity": analyzer.space_complexity } else: return {"error": "Performance estimation not supported for this language"} class ComplexityAnalyzer(ast.NodeVisitor): def __init__(self): self.time_complexity = "O(1)" self.space_complexity = "O(1)" self.loop_depth = 0 def visit_For(self, node): self.loop_depth += 1 self.generic_visit(node) self.loop_depth -= 1 self.update_complexity() def visit_While(self, node): self.loop_depth += 1 self.generic_visit(node) self.loop_depth -= 1 self.update_complexity() def update_complexity(self): if self.loop_depth > 0: self.time_complexity = f"O(n^{self.loop_depth})" self.space_complexity = "O(n)" # New function for code translation between programming languages def translate_code(code: str, source_lang: str, target_lang: str) -> str: prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code}\n\nTranslated {target_lang} code:" translated_code = generate_advanced_code(prompt, target_lang) return translated_code # New function for generating unit tests def generate_unit_tests(code: str, language: str) -> str: prompt = f"Generate unit tests for the following {language} code:\n\n{code}\n\nUnit tests:" unit_tests = generate_advanced_code(prompt, language) return unit_tests # New function for code documentation generation def generate_documentation(code: str, language: str) -> str: prompt = f"Generate comprehensive documentation for the following {language} code:\n\n{code}\n\nDocumentation:" documentation = generate_advanced_code(prompt, language) return documentation # New function for advanced code refactoring suggestions def suggest_refactoring(code: str, language: str) -> List[str]: quality_scores = analyze_code_quality(code) suggestions = suggest_improvements(code, quality_scores) # Add more specific refactoring suggestions based on code analysis tree = ast.parse(code) analyzer = RefactoringAnalyzer() analyzer.visit(tree) suggestions.extend(analyzer.suggestions) return suggestions class RefactoringAnalyzer(ast.NodeVisitor): def __init__(self): self.suggestions = [] self.function_lengths = {} def visit_FunctionDef(self, node): function_length = len(node.body) self.function_lengths[node.name] = function_length if function_length > 20: self.suggestions.append(f"Consider breaking down the function '{node.name}' into smaller, more manageable functions.") self.generic_visit(node) def visit_If(self, node): if isinstance(node.test, ast.Compare) and len(node.test.ops) > 2: self.suggestions.append("Consider simplifying complex conditional statements.") self.generic_visit(node) # New function for code security analysis def analyze_code_security(code: str, language: str) -> List[str]: vulnerabilities = [] if language == 'python': tree = ast.parse(code) analyzer = SecurityAnalyzer() analyzer.visit(tree) vulnerabilities.extend(analyzer.vulnerabilities) # Add more language-specific security checks here return vulnerabilities class SecurityAnalyzer(ast.NodeVisitor): def __init__(self): self.vulnerabilities = [] def visit_Call(self, node): if isinstance(node.func, ast.Name): if node.func.id == 'eval': self.vulnerabilities.append("Potential security risk: Use of 'eval' function detected.") elif node.func.id == 'exec': self.vulnerabilities.append("Potential security risk: Use of 'exec' function detected.") self.generic_visit(node) # New function for code optimization suggestions def suggest_optimizations(code: str, language: str) -> List[str]: suggestions = [] if language == 'python': tree = ast.parse(code) analyzer = OptimizationAnalyzer() analyzer.visit(tree) suggestions.extend(analyzer.suggestions) # Add more language-specific optimization suggestions here return suggestions class OptimizationAnalyzer(ast.NodeVisitor): def __init__(self): self.suggestions = [] self.loop_variables = set() def visit_For(self, node): if isinstance(node.iter, ast.Call) and isinstance(node.iter.func, ast.Name) and node.iter.func.id == 'range': self.suggestions.append("Consider using 'enumerate()' instead of 'range()' for index-based iteration.") self.generic_visit(node) def visit_ListComp(self, node): if isinstance(node.elt, ast.Call) and isinstance(node.elt.func, ast.Name) and node.elt.func.id == 'append': self.suggestions.append("Consider using a list comprehension instead of appending in a loop for better performance.") self.generic_visit(node) # Streamlit UI setup st.set_page_config(page_title="Advanced AI Code Assistant", page_icon="🚀", layout="wide") st.markdown(""" """, unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) st.markdown('

🚀 Advanced AI Code Assistant

', unsafe_allow_html=True) st.markdown('

Powered by Cutting-Edge AI & Multi-Domain Expertise

', unsafe_allow_html=True) task = st.selectbox("Select a task", [ "Generate Code", "Optimize Code", "Analyze Code Quality", "Translate Code", "Generate Unit Tests", "Generate Documentation", "Suggest Refactoring", "Analyze Code Security", "Suggest Optimizations" ]) language = st.selectbox("Select programming language", [ "Python", "JavaScript", "Java", "C++", "Ruby", "Go", "Rust", "TypeScript" ]) prompt = st.text_area("Enter your code or prompt", height=200) if st.button("Execute Task"): if prompt.strip() == "": st.error("Please enter a valid prompt or code snippet.") else: with st.spinner("Processing your request..."): if task == "Generate Code": result = generate_advanced_code(prompt, language.lower()) st.code(result, language=language.lower()) elif task == "Optimize Code": optimized_code, lint_results = optimize_code(prompt) st.code(optimized_code, language=language.lower()) st.text(lint_results) elif task == "Analyze Code Quality": quality_scores = analyze_code_quality(prompt) st.json(quality_scores) elif task == "Translate Code": target_lang = st.selectbox("Select target language", [ lang for lang in ["Python", "JavaScript", "Java", "C++", "Ruby", "Go", "Rust", "TypeScript"] if lang != language ]) translated_code = translate_code(prompt, language.lower(), target_lang.lower()) st.code(translated_code, language=target_lang.lower()) elif task == "Generate Unit Tests": unit_tests = generate_unit_tests(prompt, language.lower()) st.code(unit_tests, language=language.lower()) elif task == "Generate Documentation": documentation = generate_documentation(prompt, language.lower()) st.markdown(documentation) elif task == "Suggest Refactoring": refactoring_suggestions = suggest_refactoring(prompt, language.lower()) for suggestion in refactoring_suggestions: st.info(suggestion) elif task == "Analyze Code Security": vulnerabilities = analyze_code_security(prompt, language.lower()) if vulnerabilities: for vuln in vulnerabilities: st.warning(vuln) else: st.success("No obvious security vulnerabilities detected.") elif task == "Suggest Optimizations": optimization_suggestions = suggest_optimizations(prompt, language.lower()) for suggestion in optimization_suggestions: st.info(suggestion) # Additional analysis for all tasks quality_scores = analyze_code_quality(prompt) performance_estimate = estimate_code_performance(prompt) col1, col2 = st.columns(2) with col1: st.subheader("Code Quality Metrics") for metric, score in quality_scores.items(): st.metric(metric.capitalize(), f"{score:.2f}") with col2: st.subheader("Performance Estimation") st.json(performance_estimate) visualization = visualize_code_structure(prompt) if visualization: st.subheader("Code Structure Visualization") st.pyplot(visualization) st.markdown("""
Powered by Advanced AI & Multi-Domain Expertise
""", unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) # FastAPI setup for potential API endpoints app = FastAPI() class CodeRequest(BaseModel): code: str language: str task: str @app.post("/analyze") async def analyze_code(request: CodeRequest): if request.task == "quality": return analyze_code_quality(request.code) elif request.task == "security": return analyze_code_security(request.code, request.language) elif request.task == "optimize": optimized_code, _ = optimize_code(request.code) return {"optimized_code": optimized_code} else: return {"error": "Invalid task"} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)