Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,190 Bytes
1556304 1c84354 1556304 5bd9cae 1556304 1c84354 1556304 1c84354 1556304 1c84354 1556304 1c84354 1556304 1c84354 1556304 1c84354 1556304 1c84354 1556304 1c84354 1556304 1c84354 1556304 1c84354 1556304 1c84354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# L-MChat
This Space demonstrates [L-MChat](https://huggingface.co/collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU! This demo does not work on CPU.</p>"
model_options = {
"Fast-Model": "Artples/L-MChat-Small",
"Quality-Model": "Artples/L-MChat-7b"
}
@spaces.GPU(enable_queue=True, duration=90)
def generate(
message: str,
model_choice: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.1,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
model_id = model_options[model_choice]
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer(conversation, return_tensors="pt", padding=True, truncation=True)
if input_ids['input_ids'].shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids['input_ids'] = input_ids['input_ids'][:, -MAX_INPUT_TOKEN_LENGTH:]
outputs = model.generate(
**input_ids,
max_length=input_ids['input_ids'].shape[1] + max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=1,
repetition_penalty=repetition_penalty
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
yield generated_text
chat_interface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(lines=2, placeholder="Type your message here..."),
gr.Dropdown(label="Choose Model", choices=list(model_options.keys())),
gr.State(label="Chat History", default=[]),
gr.Textbox(label="System Prompt", lines=6, placeholder="Enter system prompt if any..."),
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.1),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
outputs=[gr.Textbox(label="Response")],
theme="default",
description=DESCRIPTION
)
if __name__ == "__main__":
chat_interface.launch()
|