Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,49 @@
|
|
1 |
-
|
2 |
-
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
|
6 |
-
class UserRequest(BaseModel):
|
7 |
-
prompt: str
|
8 |
-
|
9 |
-
app = FastAPI()
|
10 |
-
|
11 |
# Load the model and tokenizer
|
12 |
model_name = "Artples/L-MChat-7b"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
|
16 |
-
#
|
17 |
device = torch.device("cpu")
|
18 |
model.to(device)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
|
|
|
|
5 |
# Load the model and tokenizer
|
6 |
model_name = "Artples/L-MChat-7b"
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
+
# Ensure the model uses CPU
|
11 |
device = torch.device("cpu")
|
12 |
model.to(device)
|
13 |
|
14 |
+
def chat_with_model(json_input):
|
15 |
+
prompt = json_input['prompt']
|
16 |
+
# Tokenize the input prompt
|
17 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
18 |
+
inputs = inputs.to(device)
|
19 |
+
|
20 |
+
# Generate a response
|
21 |
+
output = model.generate(inputs, max_length=100, num_return_sequences=1)
|
22 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
return {"choices": [{"text": response_text}]}
|
25 |
+
|
26 |
+
# Define the JSON input component
|
27 |
+
json_schema = {
|
28 |
+
"title": "Request",
|
29 |
+
"type": "object",
|
30 |
+
"properties": {
|
31 |
+
"prompt": {
|
32 |
+
"type": "string",
|
33 |
+
"description": "Enter your prompt here."
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"required": ["prompt"]
|
37 |
+
}
|
38 |
+
|
39 |
+
# Create Gradio interface
|
40 |
+
iface = gr.Interface(
|
41 |
+
fn=chat_with_model,
|
42 |
+
inputs=gr.inputs.JSON(schema=json_schema),
|
43 |
+
outputs="json",
|
44 |
+
title="Chat with L-MChat-7b",
|
45 |
+
description="API-like interface using Gradio to simulate OpenAI API behavior."
|
46 |
+
)
|
47 |
+
|
48 |
+
# Run the Gradio app
|
49 |
+
iface.launch()
|