Upload Finetuning_NoteBook.ipynb
Browse files- Finetuning_NoteBook.ipynb +513 -0
Finetuning_NoteBook.ipynb
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "292aa39a",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Installing Required Libraries!"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"id": "8f5ff902",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"Installing required libraries, including trl, transformers, accelerate, peft, datasets, and bitsandbytes."
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"id": "f74b4a0d",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"\n",
|
27 |
+
"# Checks if PyTorch is installed and installs it if not.\n",
|
28 |
+
"try:\n",
|
29 |
+
" import torch\n",
|
30 |
+
" print(\"PyTorch is installed!\")\n",
|
31 |
+
"except ImportError:\n",
|
32 |
+
" print(\"PyTorch is not installed.\")\n",
|
33 |
+
" !pip install -q torch\n"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"id": "d36b37f9",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"\n",
|
44 |
+
"!pip install -q --upgrade \"transformers==4.38.2\"\n",
|
45 |
+
"!pip install -q --upgrade \"datasets==2.16.1\"\n",
|
46 |
+
"!pip install -q --upgrade \"accelerate==0.26.1\"\n",
|
47 |
+
"!pip install -q --upgrade \"evaluate==0.4.1\"\n",
|
48 |
+
"!pip install -q --upgrade \"bitsandbytes==0.42.0\"\n",
|
49 |
+
"!pip install -q --upgrade \"trl==0.7.11\"\n",
|
50 |
+
"!pip install -q --upgrade \"peft==0.8.2\"\n",
|
51 |
+
" "
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "markdown",
|
56 |
+
"id": "e9f88bba",
|
57 |
+
"metadata": {},
|
58 |
+
"source": [
|
59 |
+
"# Load and Prepare the Dataset"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "markdown",
|
64 |
+
"id": "df19b148",
|
65 |
+
"metadata": {},
|
66 |
+
"source": [
|
67 |
+
"The dataset is already formatted in a conversational format, which is supported by [trl](https://huggingface.co/docs/trl/index/), and ready for supervised finetuning."
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "markdown",
|
72 |
+
"id": "477e46f4",
|
73 |
+
"metadata": {},
|
74 |
+
"source": [
|
75 |
+
"\n",
|
76 |
+
"**Conversational format:**\n",
|
77 |
+
"\n",
|
78 |
+
"\n",
|
79 |
+
"```python {\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
80 |
+
"{\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
81 |
+
"{\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
82 |
+
"```\n"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": null,
|
88 |
+
"id": "4f9f3d7a",
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"\n",
|
93 |
+
"from datasets import load_dataset\n",
|
94 |
+
" \n",
|
95 |
+
"# Load dataset from the hub\n",
|
96 |
+
"dataset = load_dataset(\"HuggingFaceH4/ultrachat_200k\", split=\"train_sft\")\n",
|
97 |
+
" \n",
|
98 |
+
"dataset = dataset.shuffle(seed=42)\n",
|
99 |
+
" "
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "markdown",
|
104 |
+
"id": "34a66934",
|
105 |
+
"metadata": {},
|
106 |
+
"source": [
|
107 |
+
"## Setting LoRA Config"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "markdown",
|
112 |
+
"id": "b34de536",
|
113 |
+
"metadata": {},
|
114 |
+
"source": [
|
115 |
+
"The `SFTTrainer` provides native integration with `peft`, simplifying the process of efficiently tuning \n",
|
116 |
+
" Language Models (LLMs) using techniques such as [LoRA](\n",
|
117 |
+
" https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms). The only requirement is to create \n",
|
118 |
+
" the `LoraConfig` and pass it to the `SFTTrainer`. \n",
|
119 |
+
" "
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"id": "648afc1b",
|
126 |
+
"metadata": {},
|
127 |
+
"outputs": [],
|
128 |
+
"source": [
|
129 |
+
"\n",
|
130 |
+
"from peft import LoraConfig\n",
|
131 |
+
"\n",
|
132 |
+
"peft_config = LoraConfig(\n",
|
133 |
+
" lora_alpha=8,\n",
|
134 |
+
" lora_dropout=0.05,\n",
|
135 |
+
" r=6,\n",
|
136 |
+
" bias=\"none\",\n",
|
137 |
+
" target_modules=\"all-linear\",\n",
|
138 |
+
" task_type=\"CAUSAL_LM\"\n",
|
139 |
+
")\n",
|
140 |
+
" "
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "markdown",
|
145 |
+
"id": "6950f0c4",
|
146 |
+
"metadata": {},
|
147 |
+
"source": [
|
148 |
+
"## Setting the TrainingArguments"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": null,
|
154 |
+
"id": "bd721228",
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [],
|
157 |
+
"source": [
|
158 |
+
"\n",
|
159 |
+
"# Installing tensorboard to report the metrics\n",
|
160 |
+
"!pip install -q tensorboard\n",
|
161 |
+
" "
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": null,
|
167 |
+
"id": "4ced0801",
|
168 |
+
"metadata": {},
|
169 |
+
"outputs": [],
|
170 |
+
"source": [
|
171 |
+
"\n",
|
172 |
+
"from transformers import TrainingArguments\n",
|
173 |
+
"\n",
|
174 |
+
"args = TrainingArguments(\n",
|
175 |
+
" output_dir=\"temp_/tmp/model\",\n",
|
176 |
+
" num_train_epochs=15,\n",
|
177 |
+
" per_device_train_batch_size=3,\n",
|
178 |
+
" gradient_accumulation_steps=2,\n",
|
179 |
+
" gradient_checkpointing=True,\n",
|
180 |
+
" gradient_checkpointing_kwargs={'use_reentrant': False},\n",
|
181 |
+
" optim=\"adamw_torch_fused\",\n",
|
182 |
+
" logging_steps=10,\n",
|
183 |
+
" save_strategy='epoch',\n",
|
184 |
+
" learning_rate=2e-05,\n",
|
185 |
+
" bf16=True,\n",
|
186 |
+
" max_grad_norm=0.3,\n",
|
187 |
+
" warmup_ratio=0.1,\n",
|
188 |
+
" lr_scheduler_type='cosine',\n",
|
189 |
+
" report_to='tensorboard', \n",
|
190 |
+
" max_steps=-1,\n",
|
191 |
+
" seed=42,\n",
|
192 |
+
" overwrite_output_dir=True,\n",
|
193 |
+
" remove_unused_columns=True\n",
|
194 |
+
")\n",
|
195 |
+
" "
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "markdown",
|
200 |
+
"id": "432572ff",
|
201 |
+
"metadata": {},
|
202 |
+
"source": [
|
203 |
+
"## Setting the Supervised Finetuning Trainer (`SFTTrainer`)\n",
|
204 |
+
" \n",
|
205 |
+
"This `SFTTrainer` is a wrapper around the `transformers.Trainer` class and inherits all of its attributes and methods.\n",
|
206 |
+
"The trainer takes care of properly initializing the `PeftModel`. \n",
|
207 |
+
" "
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": null,
|
213 |
+
"id": "e5c50c4d",
|
214 |
+
"metadata": {},
|
215 |
+
"outputs": [],
|
216 |
+
"source": [
|
217 |
+
"\n",
|
218 |
+
"from trl import SFTTrainer\n",
|
219 |
+
"\n",
|
220 |
+
"trainer = SFTTrainer(\n",
|
221 |
+
" model=model,\n",
|
222 |
+
" args=args,\n",
|
223 |
+
" train_dataset=dataset,\n",
|
224 |
+
" peft_config=peft_config,\n",
|
225 |
+
" max_seq_length=2048,\n",
|
226 |
+
" tokenizer=tokenizer,\n",
|
227 |
+
" packing=True,\n",
|
228 |
+
" dataset_kwargs={'add_special_tokens': False, 'append_concat_token': False}\n",
|
229 |
+
")\n"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "markdown",
|
234 |
+
"id": "f6372ddf",
|
235 |
+
"metadata": {},
|
236 |
+
"source": [
|
237 |
+
"### Starting Training and Saving Model/Tokenizer\n",
|
238 |
+
"\n",
|
239 |
+
"We start training the model by calling the `train()` method on the trainer instance. This will start the training \n",
|
240 |
+
"loop and train the model for `15 epochs`. The model will be automatically saved to the output directory (**'temp_/tmp/model'**)\n",
|
241 |
+
"and to the hub in **'User//tmp/model'**. \n",
|
242 |
+
" \n",
|
243 |
+
" "
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": null,
|
249 |
+
"id": "90ea4297",
|
250 |
+
"metadata": {},
|
251 |
+
"outputs": [],
|
252 |
+
"source": [
|
253 |
+
"\n",
|
254 |
+
"\n",
|
255 |
+
"model.config.use_cache = False\n",
|
256 |
+
"\n",
|
257 |
+
"# start training\n",
|
258 |
+
"trainer.train()\n",
|
259 |
+
"\n",
|
260 |
+
"# save the peft model\n",
|
261 |
+
"trainer.save_model()\n"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "markdown",
|
266 |
+
"id": "f2ae5eb4",
|
267 |
+
"metadata": {},
|
268 |
+
"source": [
|
269 |
+
"### Free the GPU Memory to Prepare Merging `LoRA` Adapters with the Base Model\n"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": null,
|
275 |
+
"id": "a7524f47",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [],
|
278 |
+
"source": [
|
279 |
+
"\n",
|
280 |
+
"\n",
|
281 |
+
"# Free the GPU memory\n",
|
282 |
+
"del model\n",
|
283 |
+
"del trainer\n",
|
284 |
+
"torch.cuda.empty_cache()\n"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "markdown",
|
289 |
+
"id": "a67f6349",
|
290 |
+
"metadata": {},
|
291 |
+
"source": [
|
292 |
+
"## Merging LoRA Adapters into the Original Model\n",
|
293 |
+
"\n",
|
294 |
+
"While utilizing `LoRA`, we focus on training the adapters rather than the entire model. Consequently, during the \n",
|
295 |
+
"model saving process, only the `adapter weights` are preserved, not the complete model. If we wish to save the \n",
|
296 |
+
"entire model for easier usage with Text Generation Inference, we can incorporate the adapter weights into the model \n",
|
297 |
+
"weights. This can be achieved using the `merge_and_unload` method. Following this, the model can be saved using the \n",
|
298 |
+
"`save_pretrained` method. The result is a default model that is ready for inference.\n"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"execution_count": null,
|
304 |
+
"id": "ba375754",
|
305 |
+
"metadata": {},
|
306 |
+
"outputs": [],
|
307 |
+
"source": [
|
308 |
+
"\n",
|
309 |
+
"import torch\n",
|
310 |
+
"from peft import AutoPeftModelForCausalLM\n",
|
311 |
+
"\n",
|
312 |
+
"# Load Peft model on CPU\n",
|
313 |
+
"model = AutoPeftModelForCausalLM.from_pretrained(\n",
|
314 |
+
" \"temp_/tmp/model\",\n",
|
315 |
+
" torch_dtype=torch.float16,\n",
|
316 |
+
" low_cpu_mem_usage=True\n",
|
317 |
+
")\n",
|
318 |
+
" \n",
|
319 |
+
"# Merge LoRA with the base model and save\n",
|
320 |
+
"merged_model = model.merge_and_unload()\n",
|
321 |
+
"merged_model.save_pretrained(\"/tmp/model\", safe_serialization=True, max_shard_size=\"2GB\")\n",
|
322 |
+
"tokenizer.save_pretrained(\"/tmp/model\")\n"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "markdown",
|
327 |
+
"id": "1cdbbc86",
|
328 |
+
"metadata": {},
|
329 |
+
"source": [
|
330 |
+
"### Copy all result folders from 'temp_/tmp/model' to '/tmp/model'"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": null,
|
336 |
+
"id": "3254f6a5",
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"\n",
|
341 |
+
"import os\n",
|
342 |
+
"import shutil\n",
|
343 |
+
"\n",
|
344 |
+
"source_folder = \"temp_/tmp/model\"\n",
|
345 |
+
"destination_folder = \"/tmp/model\"\n",
|
346 |
+
"os.makedirs(destination_folder, exist_ok=True)\n",
|
347 |
+
"for item in os.listdir(source_folder):\n",
|
348 |
+
" item_path = os.path.join(source_folder, item)\n",
|
349 |
+
" if os.path.isdir(item_path):\n",
|
350 |
+
" destination_path = os.path.join(destination_folder, item)\n",
|
351 |
+
" shutil.copytree(item_path, destination_path)\n"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "markdown",
|
356 |
+
"id": "38468ef8",
|
357 |
+
"metadata": {},
|
358 |
+
"source": [
|
359 |
+
"### Generating a model card (README.md)"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": null,
|
365 |
+
"id": "aea8f916",
|
366 |
+
"metadata": {},
|
367 |
+
"outputs": [],
|
368 |
+
"source": [
|
369 |
+
"\n",
|
370 |
+
"card = '''\n",
|
371 |
+
"---\n",
|
372 |
+
"license: apache-2.0\n",
|
373 |
+
"tags:\n",
|
374 |
+
"- generated_from_trainer\n",
|
375 |
+
"- mistralai/Mistral\n",
|
376 |
+
"- PyTorch\n",
|
377 |
+
"- transformers\n",
|
378 |
+
"- trl\n",
|
379 |
+
"- peft\n",
|
380 |
+
"- tensorboard\n",
|
381 |
+
"base_model: mistralai/Mistral-[]\n",
|
382 |
+
"widget:\n",
|
383 |
+
" - example_title: Pirate!\n",
|
384 |
+
" messages:\n",
|
385 |
+
" - role: system\n",
|
386 |
+
" content: You are a pirate chatbot who always responds with Arr!\n",
|
387 |
+
" - role: user\n",
|
388 |
+
" content: \"There's a llama on my lawn, how can I get rid of him?\"\n",
|
389 |
+
" output:\n",
|
390 |
+
" text: >-\n",
|
391 |
+
" Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare\n",
|
392 |
+
" sight, but I've got a plan that might help ye get rid of 'im. Ye'll need\n",
|
393 |
+
" to gather some carrots and hay, and then lure the llama away with the\n",
|
394 |
+
" promise of a tasty treat. Once he's gone, ye can clean up yer lawn and\n",
|
395 |
+
" enjoy the peace and quiet once again. But beware, me hearty, for there\n",
|
396 |
+
" may be more llamas where that one came from! Arr!\n",
|
397 |
+
"model-index:\n",
|
398 |
+
"- name: /tmp/model\n",
|
399 |
+
" results: []\n",
|
400 |
+
"datasets:\n",
|
401 |
+
"- HuggingFaceH4/ultrachat_200k\n",
|
402 |
+
"language:\n",
|
403 |
+
"- en\n",
|
404 |
+
"pipeline_tag: text-generation\n",
|
405 |
+
"---\n",
|
406 |
+
"\n",
|
407 |
+
"# Model Card for /tmp/model:\n",
|
408 |
+
"\n",
|
409 |
+
"**/tmp/model** is a language model that is trained to act as helpful assistant. It is a finetuned version of [mistralai/Mistral-[]](https://huggingface.co/mistralai/Mistral-[]) that was trained using `SFTTrainer` on publicly available dataset [\n",
|
410 |
+
"HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k).\n",
|
411 |
+
"\n",
|
412 |
+
"## Training Procedure:\n",
|
413 |
+
"\n",
|
414 |
+
"The training code used to create this model was generated by [Menouar/LLM-FineTuning-Notebook-Generator](https://huggingface.co/spaces/Menouar/LLM-FineTuning-Notebook-Generator).\n",
|
415 |
+
"\n",
|
416 |
+
"\n",
|
417 |
+
"\n",
|
418 |
+
"## Training hyperparameters\n",
|
419 |
+
"\n",
|
420 |
+
"The following hyperparameters were used during the training:\n",
|
421 |
+
"\n",
|
422 |
+
"\n",
|
423 |
+
"'''\n",
|
424 |
+
"\n",
|
425 |
+
"with open(\"/tmp/model/README.md\", \"w\") as f:\n",
|
426 |
+
" f.write(card)\n",
|
427 |
+
"\n",
|
428 |
+
"args_dict = vars(args)\n",
|
429 |
+
"\n",
|
430 |
+
"with open(\"/tmp/model/README.md\", \"a\") as f:\n",
|
431 |
+
" for k, v in args_dict.items():\n",
|
432 |
+
" f.write(f\"- {k}: {v}\")\n",
|
433 |
+
" f.write(\"\\n \\n\")\n"
|
434 |
+
]
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"cell_type": "markdown",
|
438 |
+
"id": "9088a475",
|
439 |
+
"metadata": {},
|
440 |
+
"source": [
|
441 |
+
"## Login to HF"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"cell_type": "markdown",
|
446 |
+
"id": "c3359fe7",
|
447 |
+
"metadata": {},
|
448 |
+
"source": [
|
449 |
+
"Replace `HF_TOKEN` with a valid token in order to push **'/tmp/model'** to `huggingface_hub`."
|
450 |
+
]
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"cell_type": "code",
|
454 |
+
"execution_count": null,
|
455 |
+
"id": "4af7ed8e",
|
456 |
+
"metadata": {},
|
457 |
+
"outputs": [],
|
458 |
+
"source": [
|
459 |
+
"\n",
|
460 |
+
"# Install huggingface_hub\n",
|
461 |
+
"!pip install -q huggingface_hub\n",
|
462 |
+
" \n",
|
463 |
+
"from huggingface_hub import login\n",
|
464 |
+
" \n",
|
465 |
+
"login(\n",
|
466 |
+
" token='HF_TOKEN',\n",
|
467 |
+
" add_to_git_credential=True\n",
|
468 |
+
")\n",
|
469 |
+
" "
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "markdown",
|
474 |
+
"id": "08681a27",
|
475 |
+
"metadata": {},
|
476 |
+
"source": [
|
477 |
+
"## Pushing '/tmp/model' to the Hugging Face account."
|
478 |
+
]
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"cell_type": "code",
|
482 |
+
"execution_count": null,
|
483 |
+
"id": "9a3930f9",
|
484 |
+
"metadata": {},
|
485 |
+
"outputs": [],
|
486 |
+
"source": [
|
487 |
+
"\n",
|
488 |
+
"from huggingface_hub import HfApi, HfFolder, Repository\n",
|
489 |
+
"\n",
|
490 |
+
"# Instantiate the HfApi class\n",
|
491 |
+
"api = HfApi()\n",
|
492 |
+
"\n",
|
493 |
+
"# Our Hugging Face repository\n",
|
494 |
+
"repo_name = \"/tmp/model\"\n",
|
495 |
+
"\n",
|
496 |
+
"# Create a repository on the Hugging Face Hub\n",
|
497 |
+
"repo = api.create_repo(token=HfFolder.get_token(), repo_type=\"model\", repo_id=repo_name)\n",
|
498 |
+
"\n",
|
499 |
+
"api.upload_folder(\n",
|
500 |
+
" folder_path=\"/tmp/model\",\n",
|
501 |
+
" repo_id=repo.repo_id\n",
|
502 |
+
")\n"
|
503 |
+
]
|
504 |
+
}
|
505 |
+
],
|
506 |
+
"metadata": {
|
507 |
+
"language_info": {
|
508 |
+
"name": "python"
|
509 |
+
}
|
510 |
+
},
|
511 |
+
"nbformat": 4,
|
512 |
+
"nbformat_minor": 5
|
513 |
+
}
|