Delete Finetuning_NoteBook.ipynb
Browse files- Finetuning_NoteBook.ipynb +0 -597
Finetuning_NoteBook.ipynb
DELETED
@@ -1,597 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "ba5a3824",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"# Installing Required Libraries!"
|
9 |
-
]
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"cell_type": "markdown",
|
13 |
-
"id": "bb5c2ce5",
|
14 |
-
"metadata": {},
|
15 |
-
"source": [
|
16 |
-
"Installing required libraries, including trl, transformers, accelerate, peft, datasets, and bitsandbytes."
|
17 |
-
]
|
18 |
-
},
|
19 |
-
{
|
20 |
-
"cell_type": "code",
|
21 |
-
"execution_count": null,
|
22 |
-
"id": "fb17ce11",
|
23 |
-
"metadata": {},
|
24 |
-
"outputs": [],
|
25 |
-
"source": [
|
26 |
-
"\n",
|
27 |
-
"# Checks if PyTorch is installed and installs it if not.\n",
|
28 |
-
"try:\n",
|
29 |
-
" import torch\n",
|
30 |
-
" print(\"PyTorch is installed!\")\n",
|
31 |
-
"except ImportError:\n",
|
32 |
-
" print(\"PyTorch is not installed.\")\n",
|
33 |
-
" !pip install -q torch\n"
|
34 |
-
]
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"cell_type": "code",
|
38 |
-
"execution_count": null,
|
39 |
-
"id": "5f38ad58",
|
40 |
-
"metadata": {},
|
41 |
-
"outputs": [],
|
42 |
-
"source": [
|
43 |
-
"\n",
|
44 |
-
"!pip install -q --upgrade \"transformers==4.38.2\"\n",
|
45 |
-
"!pip install -q --upgrade \"datasets==2.16.1\"\n",
|
46 |
-
"!pip install -q --upgrade \"accelerate==0.26.1\"\n",
|
47 |
-
"!pip install -q --upgrade \"evaluate==0.4.1\"\n",
|
48 |
-
"!pip install -q --upgrade \"bitsandbytes==0.42.0\"\n",
|
49 |
-
"!pip install -q --upgrade \"trl==0.7.11\"\n",
|
50 |
-
"!pip install -q --upgrade \"peft==0.8.2\"\n",
|
51 |
-
" "
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "markdown",
|
56 |
-
"id": "98e65745",
|
57 |
-
"metadata": {},
|
58 |
-
"source": [
|
59 |
-
"# Load and Prepare the Dataset"
|
60 |
-
]
|
61 |
-
},
|
62 |
-
{
|
63 |
-
"cell_type": "markdown",
|
64 |
-
"id": "7cf4cbb2",
|
65 |
-
"metadata": {},
|
66 |
-
"source": [
|
67 |
-
"The dataset is already formatted in a conversational format, which is supported by [trl](https://huggingface.co/docs/trl/index/), and ready for supervised finetuning."
|
68 |
-
]
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"cell_type": "markdown",
|
72 |
-
"id": "7c50d411",
|
73 |
-
"metadata": {},
|
74 |
-
"source": [
|
75 |
-
"\n",
|
76 |
-
"**Conversational format:**\n",
|
77 |
-
"\n",
|
78 |
-
"\n",
|
79 |
-
"```python {\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
80 |
-
"{\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
81 |
-
"{\"messages\": [{\"role\": \"system\", \"content\": \"You are...\"}, {\"role\": \"user\", \"content\": \"...\"}, {\"role\": \"assistant\", \"content\": \"...\"}]}\n",
|
82 |
-
"```\n"
|
83 |
-
]
|
84 |
-
},
|
85 |
-
{
|
86 |
-
"cell_type": "code",
|
87 |
-
"execution_count": null,
|
88 |
-
"id": "60321c78",
|
89 |
-
"metadata": {},
|
90 |
-
"outputs": [],
|
91 |
-
"source": [
|
92 |
-
"\n",
|
93 |
-
"from datasets import load_dataset\n",
|
94 |
-
" \n",
|
95 |
-
"# Load dataset from the hub\n",
|
96 |
-
"dataset = load_dataset(\"HuggingFaceH4/ultrachat_200k\", split=\"train_sft\")\n",
|
97 |
-
" \n",
|
98 |
-
"dataset = dataset.shuffle(seed=42)\n",
|
99 |
-
" "
|
100 |
-
]
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"cell_type": "markdown",
|
104 |
-
"id": "5fdaa4ee",
|
105 |
-
"metadata": {},
|
106 |
-
"source": [
|
107 |
-
"# Load **mistralai/Mistral-7B-v0.1** for Finetuning"
|
108 |
-
]
|
109 |
-
},
|
110 |
-
{
|
111 |
-
"cell_type": "markdown",
|
112 |
-
"id": "e046840e",
|
113 |
-
"metadata": {},
|
114 |
-
"source": [
|
115 |
-
"\n",
|
116 |
-
"This process involves two key steps:\n",
|
117 |
-
"\n",
|
118 |
-
"1. **LLM Quantization:**\n",
|
119 |
-
" - We first load the selected large language model (LLM).\n",
|
120 |
-
" - We then use the `bitsandbytes` library to quantize the model, which can significantly reduce its memory footprint.\n",
|
121 |
-
"\n",
|
122 |
-
"> **Note:** The memory requirements of the model scale with its size. For instance, a 7B parameter model may require \n",
|
123 |
-
"a 24GB GPU for fine-tuning. \n",
|
124 |
-
"\n",
|
125 |
-
"2. **Chat Model Preparation:**\n",
|
126 |
-
" - To train a model for chat/conversational tasks, we need to prepare both the model and its tokenizer.\n",
|
127 |
-
" \n",
|
128 |
-
" - This involves adding special tokens to the tokenizer and the model itself. These tokens help the model \n",
|
129 |
-
" understand the different roles within a conversation. \n",
|
130 |
-
" \n",
|
131 |
-
" - The **trl** provides a convenient method called `setup_chat_format` for this purpose. This method performs the \n",
|
132 |
-
" following actions: \n",
|
133 |
-
" \n",
|
134 |
-
" * Adds special tokens to the tokenizer, such as `<|im_start|>` and `<|im_end|>`, to mark the beginning and \n",
|
135 |
-
" ending of a conversation. \n",
|
136 |
-
" \n",
|
137 |
-
" * Resizes the model's embedding layer to accommodate the new tokens.\n",
|
138 |
-
" \n",
|
139 |
-
" * Sets the tokenizer's chat template, which defines the format used to convert input data into a chat-like \n",
|
140 |
-
" structure. The default template is `chatml` from OpenAI.\n",
|
141 |
-
"\n",
|
142 |
-
"\n"
|
143 |
-
]
|
144 |
-
},
|
145 |
-
{
|
146 |
-
"cell_type": "code",
|
147 |
-
"execution_count": null,
|
148 |
-
"id": "e2af96b6",
|
149 |
-
"metadata": {},
|
150 |
-
"outputs": [],
|
151 |
-
"source": [
|
152 |
-
"\n",
|
153 |
-
"import torch\n",
|
154 |
-
"from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
|
155 |
-
"from trl import setup_chat_format\n",
|
156 |
-
"\n",
|
157 |
-
"# Hugging Face model id\n",
|
158 |
-
"model_id = \"mistralai/Mistral-7B-v0.1\"\n",
|
159 |
-
"\n",
|
160 |
-
"# BitsAndBytesConfig\n",
|
161 |
-
"bnb_config = BitsAndBytesConfig(\n",
|
162 |
-
" load_in_8bit=True, bnb_4bit_use_double_quant=True, \n",
|
163 |
-
" bnb_4bit_quant_type=\"nf4\", bnb_4bit_compute_dtype=torch.bfloat16 \n",
|
164 |
-
")\n",
|
165 |
-
"\n",
|
166 |
-
"# Load model and tokenizer\n",
|
167 |
-
"model = AutoModelForCausalLM.from_pretrained(\n",
|
168 |
-
" model_id,\n",
|
169 |
-
" device_map=\"auto\",\n",
|
170 |
-
" trust_remote_code=True,\n",
|
171 |
-
" \n",
|
172 |
-
" torch_dtype=torch.bfloat16,\n",
|
173 |
-
" quantization_config=bnb_config\n",
|
174 |
-
")\n",
|
175 |
-
"\n",
|
176 |
-
"tokenizer = AutoTokenizer.from_pretrained(\"mistralai/Mistral-7B-v0.1\")\n",
|
177 |
-
"tokenizer.padding_side = \"right\"\n",
|
178 |
-
"\n",
|
179 |
-
"\n",
|
180 |
-
"# Set chat template to OAI chatML\n",
|
181 |
-
"model, tokenizer = setup_chat_format(model, tokenizer)\n",
|
182 |
-
"\n",
|
183 |
-
" "
|
184 |
-
]
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"cell_type": "markdown",
|
188 |
-
"id": "1b837560",
|
189 |
-
"metadata": {},
|
190 |
-
"source": [
|
191 |
-
"## Setting LoRA Config"
|
192 |
-
]
|
193 |
-
},
|
194 |
-
{
|
195 |
-
"cell_type": "markdown",
|
196 |
-
"id": "4617d5d0",
|
197 |
-
"metadata": {},
|
198 |
-
"source": [
|
199 |
-
"The `SFTTrainer` provides native integration with `peft`, simplifying the process of efficiently tuning \n",
|
200 |
-
" Language Models (LLMs) using techniques such as [LoRA](\n",
|
201 |
-
" https://magazine.sebastianraschka.com/p/practical-tips-for-finetuning-llms). The only requirement is to create \n",
|
202 |
-
" the `LoraConfig` and pass it to the `SFTTrainer`. \n",
|
203 |
-
" "
|
204 |
-
]
|
205 |
-
},
|
206 |
-
{
|
207 |
-
"cell_type": "code",
|
208 |
-
"execution_count": null,
|
209 |
-
"id": "b6244b7f",
|
210 |
-
"metadata": {},
|
211 |
-
"outputs": [],
|
212 |
-
"source": [
|
213 |
-
"\n",
|
214 |
-
"from peft import LoraConfig\n",
|
215 |
-
"\n",
|
216 |
-
"peft_config = LoraConfig(\n",
|
217 |
-
" lora_alpha=8,\n",
|
218 |
-
" lora_dropout=0.05,\n",
|
219 |
-
" r=6,\n",
|
220 |
-
" bias=\"none\",\n",
|
221 |
-
" target_modules=\"all-linear\",\n",
|
222 |
-
" task_type=\"CAUSAL_LM\"\n",
|
223 |
-
")\n",
|
224 |
-
" "
|
225 |
-
]
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"cell_type": "markdown",
|
229 |
-
"id": "e5ffc4bd",
|
230 |
-
"metadata": {},
|
231 |
-
"source": [
|
232 |
-
"## Setting the TrainingArguments"
|
233 |
-
]
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"cell_type": "code",
|
237 |
-
"execution_count": null,
|
238 |
-
"id": "eac8898f",
|
239 |
-
"metadata": {},
|
240 |
-
"outputs": [],
|
241 |
-
"source": [
|
242 |
-
"\n",
|
243 |
-
"# Installing tensorboard to report the metrics\n",
|
244 |
-
"!pip install -q tensorboard\n",
|
245 |
-
" "
|
246 |
-
]
|
247 |
-
},
|
248 |
-
{
|
249 |
-
"cell_type": "code",
|
250 |
-
"execution_count": null,
|
251 |
-
"id": "12aa9947",
|
252 |
-
"metadata": {},
|
253 |
-
"outputs": [],
|
254 |
-
"source": [
|
255 |
-
"\n",
|
256 |
-
"from transformers import TrainingArguments\n",
|
257 |
-
"\n",
|
258 |
-
"args = TrainingArguments(\n",
|
259 |
-
" output_dir=\"temp_/LChat-7b\",\n",
|
260 |
-
" num_train_epochs=100,\n",
|
261 |
-
" per_device_train_batch_size=3,\n",
|
262 |
-
" gradient_accumulation_steps=2,\n",
|
263 |
-
" gradient_checkpointing=True,\n",
|
264 |
-
" gradient_checkpointing_kwargs={'use_reentrant': False},\n",
|
265 |
-
" optim=\"adamw_torch_fused\",\n",
|
266 |
-
" logging_steps=10,\n",
|
267 |
-
" save_strategy='epoch',\n",
|
268 |
-
" learning_rate=0.075,\n",
|
269 |
-
" bf16=True,\n",
|
270 |
-
" max_grad_norm=0.3,\n",
|
271 |
-
" warmup_ratio=0.1,\n",
|
272 |
-
" lr_scheduler_type='cosine',\n",
|
273 |
-
" report_to='tensorboard', \n",
|
274 |
-
" max_steps=-1,\n",
|
275 |
-
" seed=42,\n",
|
276 |
-
" overwrite_output_dir=True,\n",
|
277 |
-
" remove_unused_columns=True\n",
|
278 |
-
")\n",
|
279 |
-
" "
|
280 |
-
]
|
281 |
-
},
|
282 |
-
{
|
283 |
-
"cell_type": "markdown",
|
284 |
-
"id": "5c895809",
|
285 |
-
"metadata": {},
|
286 |
-
"source": [
|
287 |
-
"## Setting the Supervised Finetuning Trainer (`SFTTrainer`)\n",
|
288 |
-
" \n",
|
289 |
-
"This `SFTTrainer` is a wrapper around the `transformers.Trainer` class and inherits all of its attributes and methods.\n",
|
290 |
-
"The trainer takes care of properly initializing the `PeftModel`. \n",
|
291 |
-
" "
|
292 |
-
]
|
293 |
-
},
|
294 |
-
{
|
295 |
-
"cell_type": "code",
|
296 |
-
"execution_count": null,
|
297 |
-
"id": "d269b68a",
|
298 |
-
"metadata": {},
|
299 |
-
"outputs": [],
|
300 |
-
"source": [
|
301 |
-
"\n",
|
302 |
-
"from trl import SFTTrainer\n",
|
303 |
-
"\n",
|
304 |
-
"trainer = SFTTrainer(\n",
|
305 |
-
" model=model,\n",
|
306 |
-
" args=args,\n",
|
307 |
-
" train_dataset=dataset,\n",
|
308 |
-
" peft_config=peft_config,\n",
|
309 |
-
" max_seq_length=2048,\n",
|
310 |
-
" tokenizer=tokenizer,\n",
|
311 |
-
" packing=True,\n",
|
312 |
-
" dataset_kwargs={'add_special_tokens': False, 'append_concat_token': False}\n",
|
313 |
-
")\n"
|
314 |
-
]
|
315 |
-
},
|
316 |
-
{
|
317 |
-
"cell_type": "markdown",
|
318 |
-
"id": "b05793a3",
|
319 |
-
"metadata": {},
|
320 |
-
"source": [
|
321 |
-
"### Starting Training and Saving Model/Tokenizer\n",
|
322 |
-
"\n",
|
323 |
-
"We start training the model by calling the `train()` method on the trainer instance. This will start the training \n",
|
324 |
-
"loop and train the model for `100 epochs`. The model will be automatically saved to the output directory (**'temp_/LChat-7b'**)\n",
|
325 |
-
"and to the hub in **'User//LChat-7b'**. \n",
|
326 |
-
" \n",
|
327 |
-
" "
|
328 |
-
]
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"cell_type": "code",
|
332 |
-
"execution_count": null,
|
333 |
-
"id": "f56066fc",
|
334 |
-
"metadata": {},
|
335 |
-
"outputs": [],
|
336 |
-
"source": [
|
337 |
-
"\n",
|
338 |
-
"\n",
|
339 |
-
"model.config.use_cache = False\n",
|
340 |
-
"\n",
|
341 |
-
"# start training\n",
|
342 |
-
"trainer.train()\n",
|
343 |
-
"\n",
|
344 |
-
"# save the peft model\n",
|
345 |
-
"trainer.save_model()\n"
|
346 |
-
]
|
347 |
-
},
|
348 |
-
{
|
349 |
-
"cell_type": "markdown",
|
350 |
-
"id": "8bd579bb",
|
351 |
-
"metadata": {},
|
352 |
-
"source": [
|
353 |
-
"### Free the GPU Memory to Prepare Merging `LoRA` Adapters with the Base Model\n"
|
354 |
-
]
|
355 |
-
},
|
356 |
-
{
|
357 |
-
"cell_type": "code",
|
358 |
-
"execution_count": null,
|
359 |
-
"id": "e2b25dc2",
|
360 |
-
"metadata": {},
|
361 |
-
"outputs": [],
|
362 |
-
"source": [
|
363 |
-
"\n",
|
364 |
-
"\n",
|
365 |
-
"# Free the GPU memory\n",
|
366 |
-
"del model\n",
|
367 |
-
"del trainer\n",
|
368 |
-
"torch.cuda.empty_cache()\n"
|
369 |
-
]
|
370 |
-
},
|
371 |
-
{
|
372 |
-
"cell_type": "markdown",
|
373 |
-
"id": "8b9955ad",
|
374 |
-
"metadata": {},
|
375 |
-
"source": [
|
376 |
-
"## Merging LoRA Adapters into the Original Model\n",
|
377 |
-
"\n",
|
378 |
-
"While utilizing `LoRA`, we focus on training the adapters rather than the entire model. Consequently, during the \n",
|
379 |
-
"model saving process, only the `adapter weights` are preserved, not the complete model. If we wish to save the \n",
|
380 |
-
"entire model for easier usage with Text Generation Inference, we can incorporate the adapter weights into the model \n",
|
381 |
-
"weights. This can be achieved using the `merge_and_unload` method. Following this, the model can be saved using the \n",
|
382 |
-
"`save_pretrained` method. The result is a default model that is ready for inference.\n"
|
383 |
-
]
|
384 |
-
},
|
385 |
-
{
|
386 |
-
"cell_type": "code",
|
387 |
-
"execution_count": null,
|
388 |
-
"id": "64d5cd68",
|
389 |
-
"metadata": {},
|
390 |
-
"outputs": [],
|
391 |
-
"source": [
|
392 |
-
"\n",
|
393 |
-
"import torch\n",
|
394 |
-
"from peft import AutoPeftModelForCausalLM\n",
|
395 |
-
"\n",
|
396 |
-
"# Load Peft model on CPU\n",
|
397 |
-
"model = AutoPeftModelForCausalLM.from_pretrained(\n",
|
398 |
-
" \"temp_/LChat-7b\",\n",
|
399 |
-
" torch_dtype=torch.float16,\n",
|
400 |
-
" low_cpu_mem_usage=True\n",
|
401 |
-
")\n",
|
402 |
-
" \n",
|
403 |
-
"# Merge LoRA with the base model and save\n",
|
404 |
-
"merged_model = model.merge_and_unload()\n",
|
405 |
-
"merged_model.save_pretrained(\"/LChat-7b\", safe_serialization=True, max_shard_size=\"2GB\")\n",
|
406 |
-
"tokenizer.save_pretrained(\"/LChat-7b\")\n"
|
407 |
-
]
|
408 |
-
},
|
409 |
-
{
|
410 |
-
"cell_type": "markdown",
|
411 |
-
"id": "e8f96a1d",
|
412 |
-
"metadata": {},
|
413 |
-
"source": [
|
414 |
-
"### Copy all result folders from 'temp_/LChat-7b' to '/LChat-7b'"
|
415 |
-
]
|
416 |
-
},
|
417 |
-
{
|
418 |
-
"cell_type": "code",
|
419 |
-
"execution_count": null,
|
420 |
-
"id": "0f28559e",
|
421 |
-
"metadata": {},
|
422 |
-
"outputs": [],
|
423 |
-
"source": [
|
424 |
-
"\n",
|
425 |
-
"import os\n",
|
426 |
-
"import shutil\n",
|
427 |
-
"\n",
|
428 |
-
"source_folder = \"temp_/LChat-7b\"\n",
|
429 |
-
"destination_folder = \"/LChat-7b\"\n",
|
430 |
-
"os.makedirs(destination_folder, exist_ok=True)\n",
|
431 |
-
"for item in os.listdir(source_folder):\n",
|
432 |
-
" item_path = os.path.join(source_folder, item)\n",
|
433 |
-
" if os.path.isdir(item_path):\n",
|
434 |
-
" destination_path = os.path.join(destination_folder, item)\n",
|
435 |
-
" shutil.copytree(item_path, destination_path)\n"
|
436 |
-
]
|
437 |
-
},
|
438 |
-
{
|
439 |
-
"cell_type": "markdown",
|
440 |
-
"id": "60bf3de1",
|
441 |
-
"metadata": {},
|
442 |
-
"source": [
|
443 |
-
"### Generating a model card (README.md)"
|
444 |
-
]
|
445 |
-
},
|
446 |
-
{
|
447 |
-
"cell_type": "code",
|
448 |
-
"execution_count": null,
|
449 |
-
"id": "97fe2e33",
|
450 |
-
"metadata": {},
|
451 |
-
"outputs": [],
|
452 |
-
"source": [
|
453 |
-
"\n",
|
454 |
-
"card = '''\n",
|
455 |
-
"---\n",
|
456 |
-
"license: apache-2.0\n",
|
457 |
-
"tags:\n",
|
458 |
-
"- generated_from_trainer\n",
|
459 |
-
"- mistralai/Mistral\n",
|
460 |
-
"- PyTorch\n",
|
461 |
-
"- transformers\n",
|
462 |
-
"- trl\n",
|
463 |
-
"- peft\n",
|
464 |
-
"- tensorboard\n",
|
465 |
-
"base_model: mistralai/Mistral-7B-v0.1\n",
|
466 |
-
"widget:\n",
|
467 |
-
" - example_title: Pirate!\n",
|
468 |
-
" messages:\n",
|
469 |
-
" - role: system\n",
|
470 |
-
" content: You are a pirate chatbot who always responds with Arr!\n",
|
471 |
-
" - role: user\n",
|
472 |
-
" content: \"There's a llama on my lawn, how can I get rid of him?\"\n",
|
473 |
-
" output:\n",
|
474 |
-
" text: >-\n",
|
475 |
-
" Arr! 'Tis a puzzlin' matter, me hearty! A llama on yer lawn be a rare\n",
|
476 |
-
" sight, but I've got a plan that might help ye get rid of 'im. Ye'll need\n",
|
477 |
-
" to gather some carrots and hay, and then lure the llama away with the\n",
|
478 |
-
" promise of a tasty treat. Once he's gone, ye can clean up yer lawn and\n",
|
479 |
-
" enjoy the peace and quiet once again. But beware, me hearty, for there\n",
|
480 |
-
" may be more llamas where that one came from! Arr!\n",
|
481 |
-
"model-index:\n",
|
482 |
-
"- name: LChat-7b\n",
|
483 |
-
" results: []\n",
|
484 |
-
"datasets:\n",
|
485 |
-
"- HuggingFaceH4/ultrachat_200k\n",
|
486 |
-
"language:\n",
|
487 |
-
"- en\n",
|
488 |
-
"pipeline_tag: text-generation\n",
|
489 |
-
"---\n",
|
490 |
-
"\n",
|
491 |
-
"# Model Card for LChat-7b:\n",
|
492 |
-
"\n",
|
493 |
-
"**LChat-7b** is a language model that is trained to act as helpful assistant. It is a finetuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained using `SFTTrainer` on publicly available dataset [\n",
|
494 |
-
"HuggingFaceH4/ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k).\n",
|
495 |
-
"\n",
|
496 |
-
"## Training Procedure:\n",
|
497 |
-
"\n",
|
498 |
-
"The training code used to create this model was generated by [Menouar/LLM-FineTuning-Notebook-Generator](https://huggingface.co/spaces/Menouar/LLM-FineTuning-Notebook-Generator).\n",
|
499 |
-
"\n",
|
500 |
-
"\n",
|
501 |
-
"\n",
|
502 |
-
"## Training hyperparameters\n",
|
503 |
-
"\n",
|
504 |
-
"The following hyperparameters were used during the training:\n",
|
505 |
-
"\n",
|
506 |
-
"\n",
|
507 |
-
"'''\n",
|
508 |
-
"\n",
|
509 |
-
"with open(\"/LChat-7b/README.md\", \"w\") as f:\n",
|
510 |
-
" f.write(card)\n",
|
511 |
-
"\n",
|
512 |
-
"args_dict = vars(args)\n",
|
513 |
-
"\n",
|
514 |
-
"with open(\"/LChat-7b/README.md\", \"a\") as f:\n",
|
515 |
-
" for k, v in args_dict.items():\n",
|
516 |
-
" f.write(f\"- {k}: {v}\")\n",
|
517 |
-
" f.write(\"\\n \\n\")\n"
|
518 |
-
]
|
519 |
-
},
|
520 |
-
{
|
521 |
-
"cell_type": "markdown",
|
522 |
-
"id": "6947c4c1",
|
523 |
-
"metadata": {},
|
524 |
-
"source": [
|
525 |
-
"## Login to HF"
|
526 |
-
]
|
527 |
-
},
|
528 |
-
{
|
529 |
-
"cell_type": "markdown",
|
530 |
-
"id": "bafb24fe",
|
531 |
-
"metadata": {},
|
532 |
-
"source": [
|
533 |
-
"Replace `HF_TOKEN` with a valid token in order to push **'/LChat-7b'** to `huggingface_hub`."
|
534 |
-
]
|
535 |
-
},
|
536 |
-
{
|
537 |
-
"cell_type": "code",
|
538 |
-
"execution_count": null,
|
539 |
-
"id": "e498576f",
|
540 |
-
"metadata": {},
|
541 |
-
"outputs": [],
|
542 |
-
"source": [
|
543 |
-
"\n",
|
544 |
-
"# Install huggingface_hub\n",
|
545 |
-
"!pip install -q huggingface_hub\n",
|
546 |
-
" \n",
|
547 |
-
"from huggingface_hub import login\n",
|
548 |
-
" \n",
|
549 |
-
"login(\n",
|
550 |
-
" token='_gxyairSqRlrHFswgszIHJmObFVaGSDGcEk',\n",
|
551 |
-
" add_to_git_credential=True\n",
|
552 |
-
")\n",
|
553 |
-
" "
|
554 |
-
]
|
555 |
-
},
|
556 |
-
{
|
557 |
-
"cell_type": "markdown",
|
558 |
-
"id": "6f5071dd",
|
559 |
-
"metadata": {},
|
560 |
-
"source": [
|
561 |
-
"## Pushing '/LChat-7b' to the Hugging Face account."
|
562 |
-
]
|
563 |
-
},
|
564 |
-
{
|
565 |
-
"cell_type": "code",
|
566 |
-
"execution_count": null,
|
567 |
-
"id": "13ba8863",
|
568 |
-
"metadata": {},
|
569 |
-
"outputs": [],
|
570 |
-
"source": [
|
571 |
-
"\n",
|
572 |
-
"from huggingface_hub import HfApi, HfFolder, Repository\n",
|
573 |
-
"\n",
|
574 |
-
"# Instantiate the HfApi class\n",
|
575 |
-
"api = HfApi()\n",
|
576 |
-
"\n",
|
577 |
-
"# Our Hugging Face repository\n",
|
578 |
-
"repo_name = \"LChat-7b\"\n",
|
579 |
-
"\n",
|
580 |
-
"# Create a repository on the Hugging Face Hub\n",
|
581 |
-
"repo = api.create_repo(token=HfFolder.get_token(), repo_type=\"model\", repo_id=repo_name)\n",
|
582 |
-
"\n",
|
583 |
-
"api.upload_folder(\n",
|
584 |
-
" folder_path=\"/LChat-7b\",\n",
|
585 |
-
" repo_id=repo.repo_id\n",
|
586 |
-
")\n"
|
587 |
-
]
|
588 |
-
}
|
589 |
-
],
|
590 |
-
"metadata": {
|
591 |
-
"language_info": {
|
592 |
-
"name": "python"
|
593 |
-
}
|
594 |
-
},
|
595 |
-
"nbformat": 4,
|
596 |
-
"nbformat_minor": 5
|
597 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|