Arts-of-coding commited on
Commit
12d140f
·
verified ·
1 Parent(s): 192d254

Create DLC_WT2.py

Browse files
Files changed (1) hide show
  1. pages/DLC_WT2.py +260 -0
pages/DLC_WT2.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
+ # Shoutout to Coding-with-Adam for the initial template of the project:
3
+ # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
+
5
+ import dash
6
+ from dash import dcc, html, Output, Input, callback
7
+ import plotly.express as px
8
+ import dash_callback_chain
9
+ import yaml
10
+ import polars as pl
11
+ import os
12
+ from natsort import natsorted
13
+ #pl.enable_string_cache(False)
14
+
15
+ dash.register_page(__name__, location="sidebar")
16
+
17
+ dataset = "data10xflex/corg/WT2_polars"
18
+
19
+ # Set custom resolution for plots:
20
+ config_fig = {
21
+ 'toImageButtonOptions': {
22
+ 'format': 'svg',
23
+ 'filename': 'custom_image',
24
+ 'height': 600,
25
+ 'width': 700,
26
+ 'scale': 1,
27
+ }
28
+ }
29
+ from adlfs import AzureBlobFileSystem
30
+ mountpount=os.environ['AZURE_MOUNT_POINT'],
31
+ AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
32
+ AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
33
+
34
+ # Load in config file
35
+ config_path = "./data/config.yaml"
36
+
37
+ # Add the read-in data from the yaml file
38
+ def read_config(filename):
39
+ with open(filename, 'r') as yaml_file:
40
+ config = yaml.safe_load(yaml_file)
41
+ return config
42
+
43
+ config = read_config(config_path)
44
+ path_parquet = config.get("path_parquet")
45
+ col_batch = config.get("col_batch")
46
+ col_features = config.get("col_features")
47
+ col_counts = config.get("col_counts")
48
+ col_mt = config.get("col_mt")
49
+
50
+ #filepath = f"az://{path_parquet}"
51
+
52
+ storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
53
+ #azfs = AzureBlobFileSystem(**storage_options )
54
+
55
+ # Load in multiple dataframes
56
+ df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options)
57
+
58
+ # Create the second tab content with scatter-plot_db20-5 and scatter-plot_db20-6
59
+ tab2_content = html.Div([
60
+ html.Div([
61
+ html.Label("S-cycle genes"),
62
+ dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
63
+ options=["MCM5","PCNA","TYMS","FEN1","MCM2","MCM4","RRM1","UNG","GINS2","MCM6","CDCA7","DTL",
64
+ "PRIM1","UHRF1","HELLS","RFC2","RPA2","NASP","RAD51AP1","GMNN","WDR76","SLBP","CCNE2","UBR7",
65
+ "POLD3","MSH2","ATAD2","RAD51","RRM2","CDC45","CDC6","EXO1","TIPIN","DSCC1","BLM","CASP8AP2",
66
+ "USP1","CLSPN","POLA1","CHAF1B","BRIP1","E2F8"]),
67
+ html.Label("G2M-cycle genes"),
68
+ dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False,
69
+ options=["HMGB2","CDK1","NUSAP1","UBE2C","BIRC5","TPX2","TOP2A","NDC80","CKS2","NUF2","CKS1B","MKI67",
70
+ "TMPO","CENPF","TACC3","SMC4","CCNB2","CKAP2L","CKAP2","AURKB","BUB1","KIF11","ANP32E","TUBB4B",
71
+ "GTSE1","KIF20B","HJURP","CDCA3","CDC20","TTK","CDC25C","KIF2C","RANGAP1","NCAPD2","DLGAP5","CDCA2",
72
+ "CDCA8","ECT2","KIF23","HMMR","AURKA","PSRC1","ANLN","LBR","CKAP5","CENPE","CTCF","NEK2","G2E3",
73
+ "GAS2L3","CBX5","CENPA"]),
74
+ ]),
75
+ html.Div([
76
+ dcc.Graph(id='scatter-plot_db20-5', figure={}, className='three columns',config=config_fig)
77
+ ]),
78
+ html.Div([
79
+ dcc.Graph(id='scatter-plot_db20-6', figure={}, className='three columns',config=config_fig)
80
+ ]),
81
+ html.Div([
82
+ dcc.Graph(id='scatter-plot_db20-7', figure={}, className='three columns',config=config_fig)
83
+ ]),
84
+ html.Div([
85
+ dcc.Graph(id='scatter-plot_db20-8', figure={}, className='three columns',config=config_fig)
86
+ ]),
87
+ ])
88
+
89
+ # Create the second tab content with scatter-plot_db20-5 and scatter-plot_db20-6
90
+ tab3_content = html.Div([
91
+ html.Div([
92
+ html.Label("UMAP condition 1"),
93
+ dcc.Dropdown(id='dpdn5', value="sample", multi=False,
94
+ options=df.columns),
95
+ html.Label("UMAP condition 2"),
96
+ dcc.Dropdown(id='dpdn6', value="PAX6", multi=False,
97
+ options=df.columns),
98
+ html.Div([
99
+ dcc.Graph(id='scatter-plot_db20-9', figure={}, className='four columns', hoverData=None ,config=config_fig)
100
+ ]),
101
+ html.Div([
102
+ dcc.Graph(id='scatter-plot_db20-10', figure={}, className='four columns', hoverData=None, config=config_fig)
103
+ ]),
104
+ html.Div([
105
+ dcc.Graph(id='scatter-plot_db20-11', figure={}, className='four columns',config=config_fig)
106
+ ]),
107
+ html.Div([
108
+ dcc.Graph(id='my-graph_db202', figure={}, clickData=None, hoverData=None,
109
+ className='four columns',config=config_fig
110
+ )
111
+ ]),
112
+ ]),
113
+ ])
114
+
115
+ tab4_content = html.Div([
116
+ html.Label("Column chosen"),
117
+ dcc.Dropdown(id='dpdn2', value="leiden_res_1.35", multi=False,
118
+ options=df.columns),
119
+ html.Div([
120
+ html.Label("Multi gene"),
121
+ dcc.Dropdown(id='dpdn7', value=['PAX6', 'TP63', 'OTX2', 'SIX3', 'LHX2', 'SIX6', 'SOX2', 'PMEL',
122
+ 'RAX', 'LIN28A', 'ABCG2', 'KRT8', 'KRT7',
123
+ 'KRT19', 'COL1A2', 'AQP1', 'LUM', 'TFAP2A', 'HAND1', 'S100A9',
124
+ 'SPP1', 'TEK', 'FOXC2', 'PECAM1', 'SOX9'], multi=True,
125
+ options=df.columns),
126
+ ]),
127
+ html.Div([
128
+ dcc.Graph(id='scatter-plot_db20-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
129
+ ]),
130
+ ])
131
+
132
+ # Define the tabs layout
133
+ layout = html.Div([
134
+ html.H1(f'Dataset analysis dashboard: {dataset}'),
135
+ dcc.Tabs(id='tabs', style= {'width': 600,
136
+ 'font-size': '100%',
137
+ 'height': 50}, value='tab1',children=[
138
+ #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
139
+ #dcc.Tab(label='QC', value='tab1', children=tab1_content),
140
+ dcc.Tab(label='UMAP visualisation', value='tab3', children=tab3_content),
141
+ dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
142
+ dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
143
+ ]),
144
+ ])
145
+
146
+ @callback(
147
+ Output(component_id='scatter-plot_db20-5', component_property='figure'),
148
+ Output(component_id='scatter-plot_db20-6', component_property='figure'),
149
+ Output(component_id='scatter-plot_db20-7', component_property='figure'),
150
+ Output(component_id='scatter-plot_db20-8', component_property='figure'),
151
+ Output(component_id='scatter-plot_db20-9', component_property='figure'),
152
+ Output(component_id='scatter-plot_db20-10', component_property='figure'),
153
+ Output(component_id='scatter-plot_db20-11', component_property='figure'),
154
+ Output(component_id='scatter-plot_db20-12', component_property='figure'),
155
+ Output(component_id='my-graph_db202', component_property='figure'),
156
+ Input(component_id='dpdn2', component_property='value'),
157
+ Input(component_id='dpdn3', component_property='value'),
158
+ Input(component_id='dpdn4', component_property='value'),
159
+ Input(component_id='dpdn5', component_property='value'),
160
+ Input(component_id='dpdn6', component_property='value'),
161
+ Input(component_id='dpdn7', component_property='value'),
162
+
163
+ )
164
+
165
+ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen,
166
+ batch_chosen = df[col_chosen].unique().to_list()
167
+ dff = df.filter(
168
+ (pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
169
+ )
170
+ # Select ordering of plots
171
+ if condition1_chosen == "integrated_cell_states":
172
+ cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
173
+ else:
174
+ cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
175
+
176
+ # Calculate the mean expression
177
+
178
+ # Melt wide format DataFrame into long format
179
+ # Specify batch column as string type and gene columns as float type
180
+ list_conds = condition3_chosen
181
+ list_conds += [col_chosen]
182
+ dff_pre = dff.select(list_conds)
183
+
184
+ # Melt wide format DataFrame into long format
185
+ dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
186
+
187
+ # Calculate the mean expression levels for each gene in each region
188
+ expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() #
189
+
190
+ # Calculate the percentage total expressed
191
+ dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
192
+ count = 1
193
+ dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
194
+ dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
195
+ dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
196
+ dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
197
+ result = dff_5.select([
198
+ pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
199
+ .then(pl.col('len') / pl.col('total')*100)
200
+ .otherwise(None).alias("%"),
201
+ ])
202
+ result = result.with_columns(pl.col("%").fill_null(0))
203
+ dff_5[["percentage"]] = result[["%"]]
204
+ dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
205
+
206
+ # Final part to join the percentage expressed and mean expression levels
207
+ expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
208
+
209
+ fig_scatter_db20_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
210
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
211
+ hover_name=None, title="S-cycle gene:",template="seaborn")
212
+
213
+ fig_scatter_db20_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
214
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
215
+ hover_name='sample', title="G2M-cycle gene:",template="seaborn")
216
+
217
+ fig_scatter_db20_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
218
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
219
+ hover_name='sample', title="S score:",template="seaborn")
220
+
221
+ fig_scatter_db20_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
222
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
223
+ hover_name='sample', title="G2M score:",template="seaborn")
224
+
225
+ # Sort values of custom in-between
226
+ dff = dff.sort(condition1_chosen)
227
+
228
+ fig_scatter_db20_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
229
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
230
+ hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord)
231
+ fig_scatter_db20_9.update_traces(hoverinfo='none', hovertemplate=None)
232
+ fig_scatter_db20_9.update_layout(hovermode=False)
233
+
234
+ fig_scatter_db20_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
235
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
236
+ hover_name='sample',template="seaborn")
237
+
238
+ fig_scatter_db20_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
239
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
240
+ hover_name='sample',template="seaborn",category_orders=cat_ord)
241
+
242
+ # Reorder categories on natural sorting or on the integrated cell state order of the paper
243
+ if col_chosen == "integrated_cell_states":
244
+ fig_scatter_db20_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
245
+ size="percentage", size_max = 20,
246
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
247
+ hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
248
+ else:
249
+ fig_scatter_db20_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
250
+ size="percentage", size_max = 20,
251
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
252
+ hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
253
+
254
+ fig_violin_db202 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
255
+ color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord)
256
+
257
+
258
+ return fig_scatter_db20_5, fig_scatter_db20_6, fig_scatter_db20_7, fig_scatter_db20_8, fig_scatter_db20_9, fig_scatter_db20_10, fig_scatter_db20_11, fig_scatter_db20_12, fig_violin_db202 #fig_violin_db20, fig_pie_db20, fig_scatter_db20, fig_scatter_db20_2, fig_scatter_db20_3, fig_scatter_db20_4,
259
+
260
+ # Set http://localhost:5000/ in web browser