Arts-of-coding commited on
Commit
ae14a99
·
verified ·
1 Parent(s): acb7a3f

Rename pages/DLC_corg_week16.py to pages/DLC_wt2an2.py

Browse files
Files changed (2) hide show
  1. pages/DLC_corg_week16.py +0 -493
  2. pages/DLC_wt2an2.py +260 -0
pages/DLC_corg_week16.py DELETED
@@ -1,493 +0,0 @@
1
- # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
- # Shoutout to Coding-with-Adam for the initial template of the project:
3
- # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
-
5
- import dash
6
- from dash import dcc, html, Output, Input, callback
7
- import plotly.express as px
8
- import dash_callback_chain
9
- import yaml
10
- import polars as pl
11
- import os
12
- pl.enable_string_cache(False)
13
-
14
- dash.register_page(__name__, location="sidebar")
15
-
16
- dataset = "data10xflex/corg/DLC_corg_w16"
17
-
18
- # Set custom resolution for plots:
19
- config_fig = {
20
- 'toImageButtonOptions': {
21
- 'format': 'svg',
22
- 'filename': 'custom_image',
23
- 'height': 600,
24
- 'width': 700,
25
- 'scale': 1,
26
- }
27
- }
28
- from adlfs import AzureBlobFileSystem
29
- mountpount=os.environ['AZURE_MOUNT_POINT'],
30
- AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
31
- AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
32
-
33
- # Load in config file
34
- config_path = "./data/config.yaml"
35
-
36
- # Add the read-in data from the yaml file
37
- def read_config(filename):
38
- with open(filename, 'r') as yaml_file:
39
- config = yaml.safe_load(yaml_file)
40
- return config
41
-
42
- config = read_config(config_path)
43
- path_parquet = config.get("path_parquet")
44
- col_batch = config.get("col_batch")
45
- col_features = config.get("col_features")
46
- col_counts = config.get("col_counts")
47
- col_mt = config.get("col_mt")
48
-
49
- #filepath = f"az://{path_parquet}"
50
-
51
- storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY,'anon': False}
52
- #azfs = AzureBlobFileSystem(**storage_options )
53
-
54
- # Load in multiple dataframes
55
- df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options)
56
-
57
- # Setup the app
58
- #external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
59
- #app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
60
-
61
- #df = pl.read_parquet(filepath,storage_options=storage_options)
62
- #df = pl.DataFrame()
63
- #abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
64
- #df = df.rename({"__index_level_0__": "Unnamed: 0"})
65
-
66
- #df1 = pl.read_parquet(filepath, storage_options=storage_options)
67
-
68
- #df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
69
-
70
- #tab0_content = html.Div([
71
- # html.Label("Dataset chosen"),
72
- # dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
73
- # options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
74
- #])
75
-
76
- #@app.callback(
77
- # Input(component_id='dpdn1', component_property='value')
78
- #)
79
-
80
- #def update_filepath(dpdn1):
81
- # global df
82
- # if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
83
- # print("not identical filepath, chosing other")
84
- # df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
85
- # df = df2
86
- # return
87
-
88
- #df = pl.read_parquet(filepath, storage_options=storage_options)
89
- min_value = df[col_features].min()
90
- max_value = df[col_features].max()
91
-
92
- min_value_2 = df[col_counts].min()
93
- min_value_2 = round(min_value_2)
94
- max_value_2 = df[col_counts].max()
95
- max_value_2 = round(max_value_2)
96
-
97
- min_value_3 = df[col_mt].min()
98
- min_value_3 = round(min_value_3, 1)
99
- max_value_3 = df[col_mt].max()
100
- max_value_3 = round(max_value_3, 1)
101
-
102
- # Loads in the conditions specified in the yaml file
103
-
104
- # Note: Future version perhaps all values from a column in the dataframe of the parquet file
105
- # Note 2: This could also be a tsv of the categories and own specified colors
106
- #conditions = df[col_batch].unique().to_list()
107
- # Create the first tab content
108
- # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
109
-
110
- tab1_content = html.Div([
111
- html.Label("Column chosen"),
112
- dcc.Dropdown(id='dpdn2', value="batch", multi=False,
113
- options=df.columns),
114
- html.Label("N Genes by Counts"),
115
- dcc.RangeSlider(
116
- id='range-slider_db4-1',
117
- step=250,
118
- value=[min_value, max_value],
119
- marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
120
- ),
121
- dcc.Input(id='min-slider_db4-1', type='number', value=min_value, debounce=True),
122
- dcc.Input(id='max-slider_db4-1', type='number', value=max_value, debounce=True),
123
- html.Label("Total Counts"),
124
- dcc.RangeSlider(
125
- id='range-slider_db4-2',
126
- step=7500,
127
- value=[min_value_2, max_value_2],
128
- marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
129
- ),
130
- dcc.Input(id='min-slider_db4-2', type='number', value=min_value_2, debounce=True),
131
- dcc.Input(id='max-slider_db4-2', type='number', value=max_value_2, debounce=True),
132
- html.Label("Percent Mitochondrial Genes"),
133
- dcc.RangeSlider(
134
- id='range-slider_db4-3',
135
- step=5,
136
- min=0,
137
- max=100,
138
- value=[min_value_3, max_value_3],
139
- ),
140
- dcc.Input(id='min-slider_db4-3', type='number', value=min_value_3, debounce=True),
141
- dcc.Input(id='max-slider_db4-3', type='number', value=max_value_3, debounce=True),
142
- html.Div([
143
- dcc.Graph(id='pie-graph_db4', figure={}, className='four columns',config=config_fig),
144
- dcc.Graph(id='my-graph_db4', figure={}, clickData=None, hoverData=None,
145
- className='four columns',config=config_fig
146
- ),
147
- dcc.Graph(id='scatter-plot_db4', figure={}, className='four columns',config=config_fig)
148
- ]),
149
- html.Div([
150
- dcc.Graph(id='scatter-plot_db4-2', figure={}, className='four columns',config=config_fig)
151
- ]),
152
- html.Div([
153
- dcc.Graph(id='scatter-plot_db4-3', figure={}, className='four columns',config=config_fig)
154
- ]),
155
- html.Div([
156
- dcc.Graph(id='scatter-plot_db4-4', figure={}, className='four columns',config=config_fig)
157
- ]),
158
- ])
159
-
160
- # Create the second tab content with scatter-plot_db4-5 and scatter-plot_db4-6
161
- tab2_content = html.Div([
162
- html.Div([
163
- html.Label("S-cycle genes"),
164
- dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
165
- options=[
166
- "MCM5",
167
- "PCNA",
168
- "TYMS",
169
- "FEN1",
170
- "MCM2",
171
- "MCM4",
172
- "RRM1",
173
- "UNG",
174
- "GINS2",
175
- "MCM6",
176
- "CDCA7",
177
- "DTL",
178
- "PRIM1",
179
- "UHRF1",
180
- "MLF1IP",
181
- "HELLS",
182
- "RFC2",
183
- "RPA2",
184
- "NASP",
185
- "RAD51AP1",
186
- "GMNN",
187
- "WDR76",
188
- "SLBP",
189
- "CCNE2",
190
- "UBR7",
191
- "POLD3",
192
- "MSH2",
193
- "ATAD2",
194
- "RAD51",
195
- "RRM2",
196
- "CDC45",
197
- "CDC6",
198
- "EXO1",
199
- "TIPIN",
200
- "DSCC1",
201
- "BLM",
202
- "CASP8AP2",
203
- "USP1",
204
- "CLSPN",
205
- "POLA1",
206
- "CHAF1B",
207
- "BRIP1",
208
- "E2F8"
209
- ]),
210
- html.Label("G2M-cycle genes"),
211
- dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False,
212
- options=[
213
- 'HMGB2', 'CDK1', 'NUSAP1', 'UBE2C', 'BIRC5', 'TPX2', 'TOP2A', 'NDC80', 'CKS2', 'NUF2', 'CKS1B', 'MKI67', 'TMPO', 'CENPF', 'TACC3', 'FAM64A', 'SMC4', 'CCNB2', 'CKAP2L', 'CKAP2', 'AURKB', 'BUB1', 'KIF11', 'ANP32E', 'TUBB4B', 'GTSE1', 'KIF20B', 'HJURP', 'CDCA3', 'HN1', 'CDC20', 'TTK', 'CDC25C', 'KIF2C', 'RANGAP1', 'NCAPD2', 'DLGAP5', 'CDCA2', 'CDCA8', 'ECT2', 'KIF23', 'HMMR', 'AURKA', 'PSRC1', 'ANLN', 'LBR', 'CKAP5',
214
- 'CENPE', 'CTCF', 'NEK2', 'G2E3', 'GAS2L3', 'CBX5', 'CENPA'
215
- ]),
216
- ]),
217
- html.Div([
218
- dcc.Graph(id='scatter-plot_db4-5', figure={}, className='three columns',config=config_fig)
219
- ]),
220
- html.Div([
221
- dcc.Graph(id='scatter-plot_db4-6', figure={}, className='three columns',config=config_fig)
222
- ]),
223
- html.Div([
224
- dcc.Graph(id='scatter-plot_db4-7', figure={}, className='three columns',config=config_fig)
225
- ]),
226
- html.Div([
227
- dcc.Graph(id='scatter-plot_db4-8', figure={}, className='three columns',config=config_fig)
228
- ]),
229
- ])
230
-
231
- # Create the second tab content with scatter-plot_db4-5 and scatter-plot_db4-6
232
- tab3_content = html.Div([
233
- html.Div([
234
- html.Label("UMAP condition 1"),
235
- dcc.Dropdown(id='dpdn5', value="batch", multi=False,
236
- options=df.columns),
237
- html.Label("UMAP condition 2"),
238
- dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
239
- options=df.columns),
240
- html.Div([
241
- dcc.Graph(id='scatter-plot_db4-9', figure={}, className='four columns',config=config_fig)
242
- ]),
243
- html.Div([
244
- dcc.Graph(id='scatter-plot_db4-10', figure={}, className='four columns',config=config_fig)
245
- ]),
246
- html.Div([
247
- dcc.Graph(id='scatter-plot_db4-11', figure={}, className='four columns',config=config_fig)
248
- ]),
249
- html.Div([
250
- dcc.Graph(id='my-graph_db42', figure={}, clickData=None, hoverData=None,
251
- className='four columns',config=config_fig
252
- )
253
- ]),
254
- ]),
255
- ])
256
- # html.Div([
257
- # dcc.Graph(id='scatter-plot_db4-12', figure={}, className='four columns',config=config_fig)
258
- # ]),
259
-
260
-
261
- tab4_content = html.Div([
262
- html.Div([
263
- html.Label("Multi gene"),
264
- dcc.Dropdown(id='dpdn7', value=['PAX6', 'TP63', 'OTX2', 'SIX3', 'LHX2', 'SIX6', 'SOX2', 'PMEL',
265
- 'RAX', 'LIN28A', 'ABCG2', 'KRT8', 'KRT7',
266
- 'KRT19', 'COL1A2', 'AQP1', 'LUM', 'TFAP2A', 'HAND1', 'S100A9',
267
- 'SPP1', 'TEK', 'FOXC2', 'PECAM1', 'SOX9'], multi=True,
268
- options=df.columns),
269
- ]),
270
- html.Div([
271
- dcc.Graph(id='scatter-plot_db4-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
272
- ]),
273
- ])
274
-
275
- # Define the tabs layout
276
- layout = html.Div([
277
- html.H1(f'Dataset analysis dashboard: {dataset}'),
278
- dcc.Tabs(id='tabs', style= {'width': 600,
279
- 'font-size': '100%',
280
- 'height': 50}, value='tab1',children=[
281
- #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
282
- dcc.Tab(label='QC', value='tab1', children=tab1_content),
283
- dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
284
- dcc.Tab(label='Custom', value='tab3', children=tab3_content),
285
- dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
286
- ]),
287
- ])
288
-
289
- # Define the circular callback
290
- @callback(
291
- Output("min-slider_db4-1", "value"),
292
- Output("max-slider_db4-1", "value"),
293
- Output("min-slider_db4-2", "value"),
294
- Output("max-slider_db4-2", "value"),
295
- Output("min-slider_db4-3", "value"),
296
- Output("max-slider_db4-3", "value"),
297
- Input("min-slider_db4-1", "value"),
298
- Input("max-slider_db4-1", "value"),
299
- Input("min-slider_db4-2", "value"),
300
- Input("max-slider_db4-2", "value"),
301
- Input("min-slider_db4-3", "value"),
302
- Input("max-slider_db4-3", "value"),
303
-
304
- )
305
- def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
306
- return min_1, max_1, min_2, max_2, min_3, max_3
307
-
308
- @callback(
309
- Output('range-slider_db4-1', 'value'),
310
- Output('range-slider_db4-2', 'value'),
311
- Output('range-slider_db4-3', 'value'),
312
- Input('min-slider_db4-1', 'value'),
313
- Input('max-slider_db4-1', 'value'),
314
- Input('min-slider_db4-2', 'value'),
315
- Input('max-slider_db4-2', 'value'),
316
- Input('min-slider_db4-3', 'value'),
317
- Input('max-slider_db4-3', 'value'),
318
-
319
- )
320
- def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
321
- return [min_1, max_1], [min_2, max_2], [min_3, max_3]
322
-
323
- @callback(
324
- Output(component_id='my-graph_db4', component_property='figure'),
325
- Output(component_id='pie-graph_db4', component_property='figure'),
326
- Output(component_id='scatter-plot_db4', component_property='figure'),
327
- Output(component_id='scatter-plot_db4-2', component_property='figure'),
328
- Output(component_id='scatter-plot_db4-3', component_property='figure'),
329
- Output(component_id='scatter-plot_db4-4', component_property='figure'), # Add this new scatter plot
330
- Output(component_id='scatter-plot_db4-5', component_property='figure'),
331
- Output(component_id='scatter-plot_db4-6', component_property='figure'),
332
- Output(component_id='scatter-plot_db4-7', component_property='figure'),
333
- Output(component_id='scatter-plot_db4-8', component_property='figure'),
334
- Output(component_id='scatter-plot_db4-9', component_property='figure'),
335
- Output(component_id='scatter-plot_db4-10', component_property='figure'),
336
- Output(component_id='scatter-plot_db4-11', component_property='figure'),
337
- Output(component_id='scatter-plot_db4-12', component_property='figure'),
338
- Output(component_id='my-graph_db42', component_property='figure'),
339
- Input(component_id='dpdn2', component_property='value'),
340
- Input(component_id='dpdn3', component_property='value'),
341
- Input(component_id='dpdn4', component_property='value'),
342
- Input(component_id='dpdn5', component_property='value'),
343
- Input(component_id='dpdn6', component_property='value'),
344
- Input(component_id='dpdn7', component_property='value'),
345
- Input(component_id='range-slider_db4-1', component_property='value'),
346
- Input(component_id='range-slider_db4-2', component_property='value'),
347
- Input(component_id='range-slider_db4-3', component_property='value'),
348
-
349
- )
350
-
351
- def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen, range_value_1, range_value_2, range_value_3): #batch_chosen,
352
- batch_chosen = df[col_chosen].unique().to_list()
353
- dff = df.filter(
354
- (pl.col(col_chosen).cast(str).is_in(batch_chosen)) &
355
- (pl.col(col_features) >= range_value_1[0]) &
356
- (pl.col(col_features) <= range_value_1[1]) &
357
- (pl.col(col_counts) >= range_value_2[0]) &
358
- (pl.col(col_counts) <= range_value_2[1]) &
359
- (pl.col(col_mt) >= range_value_3[0]) &
360
- (pl.col(col_mt) <= range_value_3[1])
361
- )
362
-
363
- #Drop categories that are not in the filtered data
364
- dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
365
-
366
- dff = dff.sort(col_chosen)
367
-
368
- # Plot figures
369
- fig_violin_db4 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
370
- color=col_chosen, hover_name=col_chosen,template="seaborn")
371
-
372
- # Cache commonly used subexpressions
373
- total_count = pl.lit(len(dff))
374
- category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
375
- category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
376
-
377
- # Sort the dataframe
378
- #category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
379
-
380
- # Display the result
381
- total_cells = total_count # Calculate total number of cells
382
- pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
383
-
384
- # Calculate the mean expression
385
-
386
- # Melt wide format DataFrame into long format
387
- # Specify batch column as string type and gene columns as float type
388
- list_conds = condition3_chosen
389
- list_conds += [col_chosen]
390
- dff_pre = dff.select(list_conds)
391
-
392
- # Melt wide format DataFrame into long format
393
- dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
394
-
395
- # Calculate the mean expression levels for each gene in each region
396
- expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect()
397
-
398
- # Calculate the percentage total expressed
399
- dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
400
- count = 1
401
- dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
402
- dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
403
- dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
404
- dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
405
- result = dff_5.select([
406
- pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
407
- .then(pl.col('len') / pl.col('total')*100)
408
- .otherwise(None).alias("%"),
409
- ])
410
- result = result.with_columns(pl.col("%").fill_null(0))
411
- dff_5[["percentage"]] = result[["%"]]
412
- dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
413
-
414
- # Final part to join the percentage expressed and mean expression levels
415
- # TO DO
416
- expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
417
-
418
- # Order the dataframe on ascending categories
419
- expression_means = expression_means.sort(col_chosen, descending=True)
420
-
421
- #expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
422
- category_counts = category_counts.sort(col_chosen)
423
-
424
- fig_pie_db4 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
425
-
426
- #labels = category_counts[col_chosen].to_list()
427
- #values = category_counts["normalized_count"].to_list()
428
-
429
- # Create the scatter plots
430
- fig_scatter_db4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
431
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
432
- hover_name='batch',template="seaborn")
433
-
434
- fig_scatter_db4_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
435
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
436
- hover_name='batch',template="seaborn")
437
-
438
- fig_scatter_db4_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
439
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
440
- hover_name='batch',template="seaborn")
441
-
442
-
443
- fig_scatter_db4_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
444
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
445
- hover_name='batch',template="seaborn")
446
-
447
- fig_scatter_db4_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
448
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
449
- hover_name='batch', title="S-cycle gene:",template="seaborn")
450
-
451
- fig_scatter_db4_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
452
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
453
- hover_name='batch', title="G2M-cycle gene:",template="seaborn")
454
-
455
- fig_scatter_db4_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
456
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
457
- hover_name='batch', title="S score:",template="seaborn")
458
-
459
- fig_scatter_db4_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
460
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
461
- hover_name='batch', title="G2M score:",template="seaborn")
462
-
463
- # Sort values of custom in-between
464
- dff = dff.sort(condition1_chosen)
465
-
466
- fig_scatter_db4_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
467
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
468
- hover_name='batch',template="seaborn")
469
-
470
- fig_scatter_db4_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
471
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
472
- hover_name='batch',template="seaborn")
473
-
474
- fig_scatter_db4_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
475
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
476
- hover_name='batch',template="seaborn")
477
-
478
- fig_scatter_db4_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
479
- size="percentage", size_max = 20,
480
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
481
- hover_name=col_chosen,template="seaborn")
482
-
483
- fig_violin_db42 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
484
- color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
485
-
486
-
487
- return fig_violin_db4, fig_pie_db4, fig_scatter_db4, fig_scatter_db4_2, fig_scatter_db4_3, fig_scatter_db4_4, fig_scatter_db4_5, fig_scatter_db4_6, fig_scatter_db4_7, fig_scatter_db4_8, fig_scatter_db4_9, fig_scatter_db4_10, fig_scatter_db4_11, fig_scatter_db4_12, fig_violin_db42
488
-
489
- # Set http://localhost:5000/ in web browser
490
- # Now create your regular FASTAPI application
491
-
492
- #if __name__ == '__main__':
493
- # app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/DLC_wt2an2.py ADDED
@@ -0,0 +1,260 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
+ # Shoutout to Coding-with-Adam for the initial template of the project:
3
+ # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
+
5
+ import dash
6
+ from dash import dcc, html, Output, Input, callback
7
+ import plotly.express as px
8
+ import dash_callback_chain
9
+ import yaml
10
+ import polars as pl
11
+ import os
12
+ from natsort import natsorted
13
+ #pl.enable_string_cache(False)
14
+
15
+ dash.register_page(__name__, location="sidebar")
16
+
17
+ dataset = "data10xflex/corg/all_polars"
18
+
19
+ # Set custom resolution for plots:
20
+ config_fig = {
21
+ 'toImageButtonOptions': {
22
+ 'format': 'svg',
23
+ 'filename': 'custom_image',
24
+ 'height': 600,
25
+ 'width': 700,
26
+ 'scale': 1,
27
+ }
28
+ }
29
+ from adlfs import AzureBlobFileSystem
30
+ mountpount=os.environ['AZURE_MOUNT_POINT'],
31
+ AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
32
+ AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
33
+
34
+ # Load in config file
35
+ config_path = "./data/config.yaml"
36
+
37
+ # Add the read-in data from the yaml file
38
+ def read_config(filename):
39
+ with open(filename, 'r') as yaml_file:
40
+ config = yaml.safe_load(yaml_file)
41
+ return config
42
+
43
+ config = read_config(config_path)
44
+ path_parquet = config.get("path_parquet")
45
+ col_batch = config.get("col_batch")
46
+ col_features = config.get("col_features")
47
+ col_counts = config.get("col_counts")
48
+ col_mt = config.get("col_mt")
49
+
50
+ #filepath = f"az://{path_parquet}"
51
+
52
+ storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
53
+ #azfs = AzureBlobFileSystem(**storage_options )
54
+
55
+ # Load in multiple dataframes
56
+ df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect()
57
+
58
+ # Create the second tab content with scatter-plot_db10-5 and scatter-plot_db10-6
59
+ tab2_content = html.Div([
60
+ html.Div([
61
+ html.Label("S-cycle genes"),
62
+ dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
63
+ options=["MCM5","PCNA","TYMS","FEN1","MCM2","MCM4","RRM1","UNG","GINS2","MCM6","CDCA7","DTL",
64
+ "PRIM1","UHRF1","HELLS","RFC2","RPA2","NASP","RAD51AP1","GMNN","WDR76","SLBP","CCNE2","UBR7",
65
+ "POLD3","MSH2","ATAD2","RAD51","RRM2","CDC45","CDC6","EXO1","TIPIN","DSCC1","BLM","CASP8AP2",
66
+ "USP1","CLSPN","POLA1","CHAF1B","BRIP1","E2F8"]),
67
+ html.Label("G2M-cycle genes"),
68
+ dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False,
69
+ options=["HMGB2","CDK1","NUSAP1","UBE2C","BIRC5","TPX2","TOP2A","NDC80","CKS2","NUF2","CKS1B","MKI67",
70
+ "TMPO","CENPF","TACC3","SMC4","CCNB2","CKAP2L","CKAP2","AURKB","BUB1","KIF11","ANP32E","TUBB4B",
71
+ "GTSE1","KIF20B","HJURP","CDCA3","CDC20","TTK","CDC25C","KIF2C","RANGAP1","NCAPD2","DLGAP5","CDCA2",
72
+ "CDCA8","ECT2","KIF23","HMMR","AURKA","PSRC1","ANLN","LBR","CKAP5","CENPE","CTCF","NEK2","G2E3",
73
+ "GAS2L3","CBX5","CENPA"]),
74
+ ]),
75
+ html.Div([
76
+ dcc.Graph(id='scatter-plot_db10-5', figure={}, className='three columns',config=config_fig)
77
+ ]),
78
+ html.Div([
79
+ dcc.Graph(id='scatter-plot_db10-6', figure={}, className='three columns',config=config_fig)
80
+ ]),
81
+ html.Div([
82
+ dcc.Graph(id='scatter-plot_db10-7', figure={}, className='three columns',config=config_fig)
83
+ ]),
84
+ html.Div([
85
+ dcc.Graph(id='scatter-plot_db10-8', figure={}, className='three columns',config=config_fig)
86
+ ]),
87
+ ])
88
+
89
+ # Create the second tab content with scatter-plot_db10-5 and scatter-plot_db10-6
90
+ tab3_content = html.Div([
91
+ html.Div([
92
+ html.Label("UMAP condition 1"),
93
+ dcc.Dropdown(id='dpdn5', value="sample", multi=False,
94
+ options=df.columns),
95
+ html.Label("UMAP condition 2"),
96
+ dcc.Dropdown(id='dpdn6', value="PAX6", multi=False,
97
+ options=df.columns),
98
+ html.Div([
99
+ dcc.Graph(id='scatter-plot_db10-9', figure={}, className='four columns', hoverData=None ,config=config_fig)
100
+ ]),
101
+ html.Div([
102
+ dcc.Graph(id='scatter-plot_db10-10', figure={}, className='four columns', hoverData=None, config=config_fig)
103
+ ]),
104
+ html.Div([
105
+ dcc.Graph(id='scatter-plot_db10-11', figure={}, className='four columns',config=config_fig)
106
+ ]),
107
+ html.Div([
108
+ dcc.Graph(id='my-graph_db102', figure={}, clickData=None, hoverData=None,
109
+ className='four columns',config=config_fig
110
+ )
111
+ ]),
112
+ ]),
113
+ ])
114
+
115
+ tab4_content = html.Div([
116
+ html.Label("Column chosen"),
117
+ dcc.Dropdown(id='dpdn2', value="leiden_res_1.35", multi=False,
118
+ options=df.columns),
119
+ html.Div([
120
+ html.Label("Multi gene"),
121
+ dcc.Dropdown(id='dpdn7', value=['PAX6', 'TP63', 'OTX2', 'SIX3', 'LHX2', 'SIX6', 'SOX2', 'PMEL',
122
+ 'RAX', 'LIN28A', 'ABCG2', 'KRT8', 'KRT7',
123
+ 'KRT19', 'COL1A2', 'AQP1', 'LUM', 'TFAP2A', 'HAND1', 'S100A9',
124
+ 'SPP1', 'TEK', 'FOXC2', 'PECAM1', 'SOX9'], multi=True,
125
+ options=df.columns),
126
+ ]),
127
+ html.Div([
128
+ dcc.Graph(id='scatter-plot_db10-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
129
+ ]),
130
+ ])
131
+
132
+ # Define the tabs layout
133
+ layout = html.Div([
134
+ html.H1(f'Dataset analysis dashboard: {dataset}'),
135
+ dcc.Tabs(id='tabs', style= {'width': 600,
136
+ 'font-size': '100%',
137
+ 'height': 50}, value='tab1',children=[
138
+ #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
139
+ #dcc.Tab(label='QC', value='tab1', children=tab1_content),
140
+ dcc.Tab(label='UMAP visualisation', value='tab3', children=tab3_content),
141
+ dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
142
+ dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
143
+ ]),
144
+ ])
145
+
146
+ @callback(
147
+ Output(component_id='scatter-plot_db10-5', component_property='figure'),
148
+ Output(component_id='scatter-plot_db10-6', component_property='figure'),
149
+ Output(component_id='scatter-plot_db10-7', component_property='figure'),
150
+ Output(component_id='scatter-plot_db10-8', component_property='figure'),
151
+ Output(component_id='scatter-plot_db10-9', component_property='figure'),
152
+ Output(component_id='scatter-plot_db10-10', component_property='figure'),
153
+ Output(component_id='scatter-plot_db10-11', component_property='figure'),
154
+ Output(component_id='scatter-plot_db10-12', component_property='figure'),
155
+ Output(component_id='my-graph_db102', component_property='figure'),
156
+ Input(component_id='dpdn2', component_property='value'),
157
+ Input(component_id='dpdn3', component_property='value'),
158
+ Input(component_id='dpdn4', component_property='value'),
159
+ Input(component_id='dpdn5', component_property='value'),
160
+ Input(component_id='dpdn6', component_property='value'),
161
+ Input(component_id='dpdn7', component_property='value'),
162
+
163
+ )
164
+
165
+ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen,
166
+ batch_chosen = df[col_chosen].unique().to_list()
167
+ dff = df.filter(
168
+ (pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
169
+ )
170
+ # Select ordering of plots
171
+ if condition1_chosen == "integrated_cell_states":
172
+ cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
173
+ else:
174
+ cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
175
+
176
+ # Calculate the mean expression
177
+
178
+ # Melt wide format DataFrame into long format
179
+ # Specify batch column as string type and gene columns as float type
180
+ list_conds = condition3_chosen
181
+ list_conds += [col_chosen]
182
+ dff_pre = dff.select(list_conds)
183
+
184
+ # Melt wide format DataFrame into long format
185
+ dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
186
+
187
+ # Calculate the mean expression levels for each gene in each region
188
+ expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() #
189
+
190
+ # Calculate the percentage total expressed
191
+ dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
192
+ count = 1
193
+ dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
194
+ dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
195
+ dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
196
+ dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
197
+ result = dff_5.select([
198
+ pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
199
+ .then(pl.col('len') / pl.col('total')*100)
200
+ .otherwise(None).alias("%"),
201
+ ])
202
+ result = result.with_columns(pl.col("%").fill_null(0))
203
+ dff_5[["percentage"]] = result[["%"]]
204
+ dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
205
+
206
+ # Final part to join the percentage expressed and mean expression levels
207
+ expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
208
+
209
+ fig_scatter_db10_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
210
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
211
+ hover_name=None, title="S-cycle gene:",template="seaborn")
212
+
213
+ fig_scatter_db10_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
214
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
215
+ hover_name='sample', title="G2M-cycle gene:",template="seaborn")
216
+
217
+ fig_scatter_db10_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
218
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
219
+ hover_name='sample', title="S score:",template="seaborn")
220
+
221
+ fig_scatter_db10_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
222
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
223
+ hover_name='sample', title="G2M score:",template="seaborn")
224
+
225
+ # Sort values of custom in-between
226
+ dff = dff.sort(condition1_chosen)
227
+
228
+ fig_scatter_db10_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
229
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
230
+ hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord)
231
+ fig_scatter_db10_9.update_traces(hoverinfo='none', hovertemplate=None)
232
+ fig_scatter_db10_9.update_layout(hovermode=False)
233
+
234
+ fig_scatter_db10_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
235
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
236
+ hover_name='sample',template="seaborn")
237
+
238
+ fig_scatter_db10_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
239
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
240
+ hover_name='sample',template="seaborn",category_orders=cat_ord)
241
+
242
+ # Reorder categories on natural sorting or on the integrated cell state order of the paper
243
+ if col_chosen == "integrated_cell_states":
244
+ fig_scatter_db10_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
245
+ size="percentage", size_max = 20,
246
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
247
+ hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
248
+ else:
249
+ fig_scatter_db10_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
250
+ size="percentage", size_max = 20,
251
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
252
+ hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
253
+
254
+ fig_violin_db102 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
255
+ color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord)
256
+
257
+
258
+ return fig_scatter_db10_5, fig_scatter_db10_6, fig_scatter_db10_7, fig_scatter_db10_8, fig_scatter_db10_9, fig_scatter_db10_10, fig_scatter_db10_11, fig_scatter_db10_12, fig_violin_db102 #fig_violin_db10, fig_pie_db10, fig_scatter_db10, fig_scatter_db10_2, fig_scatter_db10_3, fig_scatter_db10_4,
259
+
260
+ # Set http://localhost:5000/ in web browser