Arts-of-coding commited on
Commit
00aa299
·
1 Parent(s): ddd0630

Update pages/Cornea_v1_integrated_scVI.py

Browse files
Files changed (1) hide show
  1. pages/Cornea_v1_integrated_scVI.py +12 -167
pages/Cornea_v1_integrated_scVI.py CHANGED
@@ -50,128 +50,26 @@ col_mt = config.get("col_mt")
50
  #filepath = f"az://{path_parquet}"
51
 
52
  storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
53
- #azfs = AzureBlobFileSystem(**storage_options )
54
 
55
- # Load in multiple dataframes
56
  # Load in multiple dataframes
57
  df = pl.scan_parquet(f"./data/{dataset}.parquet", storage_options=storage_options).collect()
58
 
59
- # Setup the app
60
- #external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
61
- #app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
62
-
63
- #df = pl.read_parquet(filepath,storage_options=storage_options)
64
- #df = pl.DataFrame()
65
- #abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
66
- #df = df.rename({"__index_level_0__": "Unnamed: 0"})
67
-
68
- #df1 = pl.read_parquet(filepath, storage_options=storage_options)
69
-
70
- #df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
71
-
72
- #tab0_content = html.Div([
73
- # html.Label("Dataset chosen"),
74
- # dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
75
- # options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
76
- #])
77
-
78
- #@app.callback(
79
- # Input(component_id='dpdn1', component_property='value')
80
- #)
81
-
82
- #def update_filepath(dpdn1):
83
- # global df
84
- # if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
85
- # print("not identical filepath, chosing other")
86
- # df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
87
- # df = df2
88
- # return
89
-
90
- #df = pl.read_parquet(filepath, storage_options=storage_options)
91
- #min_value = df[col_features].min()
92
- #max_value = df[col_features].max()
93
-
94
- #min_value_2 = df[col_counts].min()
95
- #min_value_2 = round(min_value_2)
96
- #max_value_2 = df[col_counts].max()
97
- #max_value_2 = round(max_value_2)
98
-
99
- #min_value_3 = df[col_mt].min()
100
- #min_value_3 = round(min_value_3, 1)
101
- #max_value_3 = df[col_mt].max()
102
- #max_value_3 = round(max_value_3, 1)
103
-
104
- # Loads in the conditions specified in the yaml file
105
-
106
- # Note: Future version perhaps all values from a column in the dataframe of the parquet file
107
- # Note 2: This could also be a tsv of the categories and own specified colors
108
- #conditions = df[col_batch].unique().to_list()
109
- # Create the first tab content
110
- # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
111
-
112
- # tab1_content = html.Div([
113
- # html.Label("Column chosen"),
114
- # dcc.Dropdown(id='dpdn2', value="batch", multi=False,
115
- # options=df.columns),
116
- # html.Label("N Genes by Counts"),
117
- # dcc.RangeSlider(
118
- # id='range-slider_db2-1',
119
- # step=250,
120
- # value=[min_value, max_value],
121
- # marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
122
- # ),
123
- # dcc.Input(id='min-slider_db2-1', type='number', value=min_value, debounce=True),
124
- # dcc.Input(id='max-slider_db2-1', type='number', value=max_value, debounce=True),
125
- # html.Label("Total Counts"),
126
- # dcc.RangeSlider(
127
- # id='range-slider_db2-2',
128
- # step=7500,
129
- # value=[min_value_2, max_value_2],
130
- # marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
131
- # ),
132
- # dcc.Input(id='min-slider_db2-2', type='number', value=min_value_2, debounce=True),
133
- # dcc.Input(id='max-slider_db2-2', type='number', value=max_value_2, debounce=True),
134
- # html.Label("Percent Mitochondrial Genes"),
135
- # dcc.RangeSlider(
136
- # id='range-slider_db2-3',
137
- # step=5,
138
- # min=0,
139
- # max=100,
140
- # value=[min_value_3, max_value_3],
141
- # ),
142
- # dcc.Input(id='min-slider_db2-3', type='number', value=min_value_3, debounce=True),
143
- # dcc.Input(id='max-slider_db2-3', type='number', value=max_value_3, debounce=True),
144
- # html.Div([
145
- # dcc.Graph(id='pie-graph_db2', figure={}, className='four columns',config=config_fig),
146
- # dcc.Graph(id='my-graph_db2', figure={}, clickData=None, hoverData=None,
147
- # className='four columns',config=config_fig
148
- # ),
149
- # dcc.Graph(id='scatter-plot_db2', figure={}, className='four columns',config=config_fig)
150
- # ]),
151
- # html.Div([
152
- # dcc.Graph(id='scatter-plot_db2-2', figure={}, className='four columns',config=config_fig)
153
- # ]),
154
- # html.Div([
155
- # dcc.Graph(id='scatter-plot_db2-3', figure={}, className='four columns',config=config_fig)
156
- # ]),
157
- # html.Div([
158
- # dcc.Graph(id='scatter-plot_db2-4', figure={}, className='four columns',config=config_fig)
159
- # ]),
160
- # ])
161
-
162
  # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
163
  tab2_content = html.Div([
164
  html.Div([
165
  html.Label("S-cycle genes"),
166
- dcc.Dropdown(id='dpdn3', value="PAX6", multi=False,
167
- options=[
168
- "PAX6"
169
- ]),
 
170
  html.Label("G2M-cycle genes"),
171
- dcc.Dropdown(id='dpdn4', value="PAX6", multi=False,
172
- options=[
173
- "PAX6"
174
- ]),
 
 
175
  ]),
176
  html.Div([
177
  dcc.Graph(id='scatter-plot_db2-5', figure={}, className='three columns',config=config_fig)
@@ -212,10 +110,6 @@ tab3_content = html.Div([
212
  ]),
213
  ]),
214
  ])
215
- # html.Div([
216
- # dcc.Graph(id='scatter-plot_db2-12', figure={}, className='four columns',config=config_fig)
217
- # ]),
218
-
219
 
220
  tab4_content = html.Div([
221
  html.Label("Column chosen"),
@@ -245,47 +139,7 @@ layout = html.Div([
245
  ]),
246
  ])
247
 
248
- # Define the circular callback
249
- #@callback(
250
- #Output("min-slider_db2-1", "value"),
251
- #Output("max-slider_db2-1", "value"),
252
- #Output("min-slider_db2-2", "value"),
253
- #Output("max-slider_db2-2", "value"),
254
- #Output("min-slider_db2-3", "value"),
255
- #Output("max-slider_db2-3", "value"),
256
- #Input("min-slider_db2-1", "value"),
257
- #Input("max-slider_db2-1", "value"),
258
- #Input("min-slider_db2-2", "value"),
259
- #Input("max-slider_db2-2", "value"),
260
- #Input("min-slider_db2-3", "value"),
261
- #Input("max-slider_db2-3", "value"),
262
-
263
- #)
264
- # def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
265
- # return min_1, max_1, min_2, max_2, min_3, max_3
266
-
267
- # @callback(
268
- # Output('range-slider_db2-1', 'value'),
269
- # Output('range-slider_db2-2', 'value'),
270
- # Output('range-slider_db2-3', 'value'),
271
- # Input('min-slider_db2-1', 'value'),
272
- # Input('max-slider_db2-1', 'value'),
273
- # Input('min-slider_db2-2', 'value'),
274
- # Input('max-slider_db2-2', 'value'),
275
- # Input('min-slider_db2-3', 'value'),
276
- # Input('max-slider_db2-3', 'value'),
277
-
278
- # )
279
- # def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
280
- # return [min_1, max_1], [min_2, max_2], [min_3, max_3]
281
-
282
  @callback(
283
- #Output(component_id='my-graph_db2', component_property='figure'),
284
- #Output(component_id='pie-graph_db2', component_property='figure'),
285
- #Output(component_id='scatter-plot_db2', component_property='figure'),
286
- #Output(component_id='scatter-plot_db2-2', component_property='figure'),
287
- #Output(component_id='scatter-plot_db2-3', component_property='figure'),
288
- #Output(component_id='scatter-plot_db2-4', component_property='figure'), # Add this new scatter plot
289
  Output(component_id='scatter-plot_db2-5', component_property='figure'),
290
  Output(component_id='scatter-plot_db2-6', component_property='figure'),
291
  Output(component_id='scatter-plot_db2-7', component_property='figure'),
@@ -301,9 +155,6 @@ layout = html.Div([
301
  Input(component_id='dpdn5', component_property='value'),
302
  Input(component_id='dpdn6', component_property='value'),
303
  Input(component_id='dpdn7', component_property='value'),
304
- #Input(component_id='range-slider_db2-1', component_property='value'),
305
- #Input(component_id='range-slider_db2-2', component_property='value'),
306
- #Input(component_id='range-slider_db2-3', component_property='value'),
307
 
308
  )
309
 
@@ -311,12 +162,6 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
311
  batch_chosen = df[col_chosen].unique().to_list()
312
  dff = df.filter(
313
  (pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
314
- #(pl.col(col_features) >= range_value_1[0]) &
315
- #(pl.col(col_features) <= range_value_1[1]) &
316
- #(pl.col(col_counts) >= range_value_2[0]) &
317
- #(pl.col(col_counts) <= range_value_2[1]) &
318
- #(pl.col(col_mt) >= range_value_3[0]) &
319
- #(pl.col(col_mt) <= range_value_3[1])
320
  )
321
  # Select ordering of plots
322
  if condition1_chosen == "integrated_cell_states":
@@ -355,7 +200,6 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
355
  dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
356
 
357
  # Final part to join the percentage expressed and mean expression levels
358
- # TO DO
359
  expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
360
 
361
  fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
@@ -389,6 +233,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
389
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
390
  hover_name='studies',template="seaborn",category_orders=cat_ord)
391
 
 
392
  if col_chosen == "integrated_cell_states":
393
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
394
  size="percentage", size_max = 20,
 
50
  #filepath = f"az://{path_parquet}"
51
 
52
  storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
 
53
 
 
54
  # Load in multiple dataframes
55
  df = pl.scan_parquet(f"./data/{dataset}.parquet", storage_options=storage_options).collect()
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57
  # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
58
  tab2_content = html.Div([
59
  html.Div([
60
  html.Label("S-cycle genes"),
61
+ dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
62
+ options=["MCM5","PCNA","TYMS","FEN1","MCM2","MCM4","RRM1","UNG","GINS2","MCM6","CDCA7","DTL",
63
+ "PRIM1","UHRF1","HELLS","RFC2","RPA2","NASP","RAD51AP1","GMNN","WDR76","SLBP","CCNE2","UBR7",
64
+ "POLD3","MSH2","ATAD2","RAD51","RRM2","CDC45","CDC6","EXO1","TIPIN","DSCC1","BLM","CASP8AP2",
65
+ "USP1","CLSPN","POLA1","CHAF1B","BRIP1","E2F8"]),
66
  html.Label("G2M-cycle genes"),
67
+ dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False,
68
+ options=["HMGB2","CDK1","NUSAP1","UBE2C","BIRC5","TPX2","TOP2A","NDC80","CKS2","NUF2","CKS1B","MKI67",
69
+ "TMPO","CENPF","TACC3","SMC4","CCNB2","CKAP2L","CKAP2","AURKB","BUB1","KIF11","ANP32E","TUBB4B",
70
+ "GTSE1","KIF20B","HJURP","CDCA3","CDC20","TTK","CDC25C","KIF2C","RANGAP1","NCAPD2","DLGAP5","CDCA2",
71
+ "CDCA8","ECT2","KIF23","HMMR","AURKA","PSRC1","ANLN","LBR","CKAP5","CENPE","CTCF","NEK2","G2E3",
72
+ "GAS2L3","CBX5","CENPA"]),
73
  ]),
74
  html.Div([
75
  dcc.Graph(id='scatter-plot_db2-5', figure={}, className='three columns',config=config_fig)
 
110
  ]),
111
  ]),
112
  ])
 
 
 
 
113
 
114
  tab4_content = html.Div([
115
  html.Label("Column chosen"),
 
139
  ]),
140
  ])
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
  @callback(
 
 
 
 
 
 
143
  Output(component_id='scatter-plot_db2-5', component_property='figure'),
144
  Output(component_id='scatter-plot_db2-6', component_property='figure'),
145
  Output(component_id='scatter-plot_db2-7', component_property='figure'),
 
155
  Input(component_id='dpdn5', component_property='value'),
156
  Input(component_id='dpdn6', component_property='value'),
157
  Input(component_id='dpdn7', component_property='value'),
 
 
 
158
 
159
  )
160
 
 
162
  batch_chosen = df[col_chosen].unique().to_list()
163
  dff = df.filter(
164
  (pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
 
 
 
 
 
 
165
  )
166
  # Select ordering of plots
167
  if condition1_chosen == "integrated_cell_states":
 
200
  dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
201
 
202
  # Final part to join the percentage expressed and mean expression levels
 
203
  expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
204
 
205
  fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
 
233
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
234
  hover_name='studies',template="seaborn",category_orders=cat_ord)
235
 
236
+ # Reorder categories on natural sorting or on the integrated cell state order of the paper
237
  if col_chosen == "integrated_cell_states":
238
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
239
  size="percentage", size_max = 20,