Arts-of-coding commited on
Commit
42ffbc5
·
1 Parent(s): 0b3c509

Update pages/Cornea_v1_integrated_scVI.py

Browse files
Files changed (1) hide show
  1. pages/Cornea_v1_integrated_scVI.py +7 -52
pages/Cornea_v1_integrated_scVI.py CHANGED
@@ -318,27 +318,11 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
318
  #(pl.col(col_mt) >= range_value_3[0]) &
319
  #(pl.col(col_mt) <= range_value_3[1])
320
  )
321
-
322
- # #Drop categories that are not in the filtered data
323
- # dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
324
-
325
- # dff = dff.sort(col_chosen)
326
-
327
- # # Plot figures
328
- # fig_violin_db2 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
329
- # color=col_chosen, hover_name=col_chosen,template="seaborn")
330
-
331
- # # Cache commonly used subexpressions
332
- # total_count = pl.lit(len(dff))
333
- # category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
334
- # category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
335
-
336
- # # Sort the dataframe
337
- # #category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
338
-
339
- # # Display the result
340
- # total_cells = total_count # Calculate total number of cells
341
- # pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
342
 
343
  # Calculate the mean expression
344
 
@@ -373,35 +357,6 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
373
  # Final part to join the percentage expressed and mean expression levels
374
  # TO DO
375
  expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
376
-
377
- # Order the dataframe on ascending categories
378
- #expression_means = expression_means.sort(col_chosen, descending=False)
379
-
380
- #expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
381
- # category_counts = category_counts.sort(col_chosen)
382
-
383
- # fig_pie_db2 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
384
-
385
- # #labels = category_counts[col_chosen].to_list()
386
- # #values = category_counts["normalized_count"].to_list()
387
-
388
- # # Create the scatter plots
389
- # fig_scatter_db2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
390
- # labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
391
- # hover_name='batch',template="seaborn")
392
-
393
- # fig_scatter_db2_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
394
- # labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
395
- # hover_name='batch',template="seaborn")
396
-
397
- # fig_scatter_db2_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
398
- # labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
399
- # hover_name='batch',template="seaborn")
400
-
401
-
402
- # fig_scatter_db2_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
403
- # labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
404
- # hover_name='batch',template="seaborn")
405
 
406
  fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
407
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
@@ -424,7 +379,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
424
 
425
  fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
426
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
427
- hover_name='studies',template="seaborn")
428
 
429
  fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
430
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
@@ -432,7 +387,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
432
 
433
  fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
434
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
435
- hover_name='studies',template="seaborn")
436
 
437
  if col_chosen == "integrated_cell_states":
438
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
 
318
  #(pl.col(col_mt) >= range_value_3[0]) &
319
  #(pl.col(col_mt) <= range_value_3[1])
320
  )
321
+ # Select ordering of plots
322
+ if col_chosen == "integrated_cell_states":
323
+ cat_ord= {condition1_chosen: ["LSC-1","LSC-2","LE","CE","Cj","qSK","SK","TSK","CF","EC","Ves","Mel","IC","nm-cSC","MC"]}
324
+ else:
325
+ cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326
 
327
  # Calculate the mean expression
328
 
 
357
  # Final part to join the percentage expressed and mean expression levels
358
  # TO DO
359
  expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360
 
361
  fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
362
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
 
379
 
380
  fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
381
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
382
+ hover_name='studies',template="seaborn",category_orders=cat_ord)
383
 
384
  fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
385
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
 
387
 
388
  fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
389
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
390
+ hover_name='studies',template="seaborn",category_orders=cat_ord)
391
 
392
  if col_chosen == "integrated_cell_states":
393
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",