Arts-of-coding commited on
Commit
74e0145
·
1 Parent(s): f30c2bd

Update pages/Cornea_v1_integrated_scVI.py

Browse files
Files changed (1) hide show
  1. pages/Cornea_v1_integrated_scVI.py +15 -15
pages/Cornea_v1_integrated_scVI.py CHANGED
@@ -158,7 +158,7 @@ df = pl.scan_parquet(f"./data/{dataset}.parquet", storage_options=storage_option
158
  # ])
159
 
160
  # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
161
- tab2_content = html.Div([
162
  html.Div([
163
  html.Label("S-cycle genes"),
164
  dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
@@ -229,13 +229,13 @@ tab2_content = html.Div([
229
  ])
230
 
231
  # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
232
- tab3_content = html.Div([
233
  html.Div([
234
  html.Label("UMAP condition 1"),
235
- dcc.Dropdown(id='dpdn5', value="batch", multi=False,
236
  options=df.columns),
237
  html.Label("UMAP condition 2"),
238
- dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
239
  options=df.columns),
240
  html.Div([
241
  dcc.Graph(id='scatter-plot_db2-9', figure={}, className='four columns',config=config_fig)
@@ -258,7 +258,7 @@ tab3_content = html.Div([
258
  # ]),
259
 
260
 
261
- tab4_content = html.Div([
262
  html.Label("Column chosen"),
263
  dcc.Dropdown(id='dpdn2', value="latest", multi=False,
264
  options=df.columns),
@@ -280,9 +280,9 @@ layout = html.Div([
280
  'height': 50}, value='tab1',children=[
281
  #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
282
  #dcc.Tab(label='QC', value='tab1', children=tab1_content),
283
- dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
284
- dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
285
- dcc.Tab(label='Custom', value='tab3', children=tab3_content),
286
  ]),
287
  ])
288
 
@@ -446,34 +446,34 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
446
 
447
  fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
448
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
449
- hover_name='batch', title="S-cycle gene:",template="seaborn")
450
 
451
  fig_scatter_db2_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
452
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
453
- hover_name='batch', title="G2M-cycle gene:",template="seaborn")
454
 
455
  fig_scatter_db2_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
456
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
457
- hover_name='batch', title="S score:",template="seaborn")
458
 
459
  fig_scatter_db2_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
460
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
461
- hover_name='batch', title="G2M score:",template="seaborn")
462
 
463
  # Sort values of custom in-between
464
  dff = dff.sort(condition1_chosen)
465
 
466
  fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
467
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
468
- hover_name='batch',template="seaborn")
469
 
470
  fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
471
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
472
- hover_name='batch',template="seaborn")
473
 
474
  fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
475
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
476
- hover_name='batch',template="seaborn")
477
 
478
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
479
  size="percentage", size_max = 20,
 
158
  # ])
159
 
160
  # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
161
+ tab4_content = html.Div([
162
  html.Div([
163
  html.Label("S-cycle genes"),
164
  dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
 
229
  ])
230
 
231
  # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
232
+ tab2_content = html.Div([
233
  html.Div([
234
  html.Label("UMAP condition 1"),
235
+ dcc.Dropdown(id='dpdn5', value="studies", multi=False,
236
  options=df.columns),
237
  html.Label("UMAP condition 2"),
238
+ dcc.Dropdown(id='dpdn6', value="PAX6", multi=False,
239
  options=df.columns),
240
  html.Div([
241
  dcc.Graph(id='scatter-plot_db2-9', figure={}, className='four columns',config=config_fig)
 
258
  # ]),
259
 
260
 
261
+ tab3_content = html.Div([
262
  html.Label("Column chosen"),
263
  dcc.Dropdown(id='dpdn2', value="latest", multi=False,
264
  options=df.columns),
 
280
  'height': 50}, value='tab1',children=[
281
  #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
282
  #dcc.Tab(label='QC', value='tab1', children=tab1_content),
283
+ dcc.Tab(label='Multi dot', value='tab3', children=tab3_content),
284
+ dcc.Tab(label='Cell cycle', value='tab4', children=tab4_content),
285
+ dcc.Tab(label='UMAP visualisation', value='tab2', children=tab2_content),
286
  ]),
287
  ])
288
 
 
446
 
447
  fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
448
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
449
+ hover_name='studies', title="S-cycle gene:",template="seaborn")
450
 
451
  fig_scatter_db2_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
452
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
453
+ hover_name='studies', title="G2M-cycle gene:",template="seaborn")
454
 
455
  fig_scatter_db2_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
456
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
457
+ hover_name='studies', title="S score:",template="seaborn")
458
 
459
  fig_scatter_db2_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
460
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
461
+ hover_name='studies', title="G2M score:",template="seaborn")
462
 
463
  # Sort values of custom in-between
464
  dff = dff.sort(condition1_chosen)
465
 
466
  fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
467
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
468
+ hover_name='studies',template="seaborn")
469
 
470
  fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
471
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
472
+ hover_name='studies',template="seaborn")
473
 
474
  fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
475
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
476
+ hover_name='studies',template="seaborn")
477
 
478
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
479
  size="percentage", size_max = 20,