Commit
·
74e0145
1
Parent(s):
f30c2bd
Update pages/Cornea_v1_integrated_scVI.py
Browse files
pages/Cornea_v1_integrated_scVI.py
CHANGED
@@ -158,7 +158,7 @@ df = pl.scan_parquet(f"./data/{dataset}.parquet", storage_options=storage_option
|
|
158 |
# ])
|
159 |
|
160 |
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
161 |
-
|
162 |
html.Div([
|
163 |
html.Label("S-cycle genes"),
|
164 |
dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
|
@@ -229,13 +229,13 @@ tab2_content = html.Div([
|
|
229 |
])
|
230 |
|
231 |
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
232 |
-
|
233 |
html.Div([
|
234 |
html.Label("UMAP condition 1"),
|
235 |
-
dcc.Dropdown(id='dpdn5', value="
|
236 |
options=df.columns),
|
237 |
html.Label("UMAP condition 2"),
|
238 |
-
dcc.Dropdown(id='dpdn6', value="
|
239 |
options=df.columns),
|
240 |
html.Div([
|
241 |
dcc.Graph(id='scatter-plot_db2-9', figure={}, className='four columns',config=config_fig)
|
@@ -258,7 +258,7 @@ tab3_content = html.Div([
|
|
258 |
# ]),
|
259 |
|
260 |
|
261 |
-
|
262 |
html.Label("Column chosen"),
|
263 |
dcc.Dropdown(id='dpdn2', value="latest", multi=False,
|
264 |
options=df.columns),
|
@@ -280,9 +280,9 @@ layout = html.Div([
|
|
280 |
'height': 50}, value='tab1',children=[
|
281 |
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
|
282 |
#dcc.Tab(label='QC', value='tab1', children=tab1_content),
|
283 |
-
dcc.Tab(label='Multi dot', value='
|
284 |
-
dcc.Tab(label='Cell cycle', value='
|
285 |
-
dcc.Tab(label='
|
286 |
]),
|
287 |
])
|
288 |
|
@@ -446,34 +446,34 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
446 |
|
447 |
fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
|
448 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
449 |
-
hover_name='
|
450 |
|
451 |
fig_scatter_db2_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
|
452 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
453 |
-
hover_name='
|
454 |
|
455 |
fig_scatter_db2_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
|
456 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
457 |
-
hover_name='
|
458 |
|
459 |
fig_scatter_db2_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
|
460 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
461 |
-
hover_name='
|
462 |
|
463 |
# Sort values of custom in-between
|
464 |
dff = dff.sort(condition1_chosen)
|
465 |
|
466 |
fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
|
467 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
468 |
-
hover_name='
|
469 |
|
470 |
fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
|
471 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
472 |
-
hover_name='
|
473 |
|
474 |
fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
|
475 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
476 |
-
hover_name='
|
477 |
|
478 |
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
479 |
size="percentage", size_max = 20,
|
|
|
158 |
# ])
|
159 |
|
160 |
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
161 |
+
tab4_content = html.Div([
|
162 |
html.Div([
|
163 |
html.Label("S-cycle genes"),
|
164 |
dcc.Dropdown(id='dpdn3', value="MCM5", multi=False,
|
|
|
229 |
])
|
230 |
|
231 |
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
232 |
+
tab2_content = html.Div([
|
233 |
html.Div([
|
234 |
html.Label("UMAP condition 1"),
|
235 |
+
dcc.Dropdown(id='dpdn5', value="studies", multi=False,
|
236 |
options=df.columns),
|
237 |
html.Label("UMAP condition 2"),
|
238 |
+
dcc.Dropdown(id='dpdn6', value="PAX6", multi=False,
|
239 |
options=df.columns),
|
240 |
html.Div([
|
241 |
dcc.Graph(id='scatter-plot_db2-9', figure={}, className='four columns',config=config_fig)
|
|
|
258 |
# ]),
|
259 |
|
260 |
|
261 |
+
tab3_content = html.Div([
|
262 |
html.Label("Column chosen"),
|
263 |
dcc.Dropdown(id='dpdn2', value="latest", multi=False,
|
264 |
options=df.columns),
|
|
|
280 |
'height': 50}, value='tab1',children=[
|
281 |
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
|
282 |
#dcc.Tab(label='QC', value='tab1', children=tab1_content),
|
283 |
+
dcc.Tab(label='Multi dot', value='tab3', children=tab3_content),
|
284 |
+
dcc.Tab(label='Cell cycle', value='tab4', children=tab4_content),
|
285 |
+
dcc.Tab(label='UMAP visualisation', value='tab2', children=tab2_content),
|
286 |
]),
|
287 |
])
|
288 |
|
|
|
446 |
|
447 |
fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
|
448 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
449 |
+
hover_name='studies', title="S-cycle gene:",template="seaborn")
|
450 |
|
451 |
fig_scatter_db2_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
|
452 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
453 |
+
hover_name='studies', title="G2M-cycle gene:",template="seaborn")
|
454 |
|
455 |
fig_scatter_db2_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
|
456 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
457 |
+
hover_name='studies', title="S score:",template="seaborn")
|
458 |
|
459 |
fig_scatter_db2_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
|
460 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
461 |
+
hover_name='studies', title="G2M score:",template="seaborn")
|
462 |
|
463 |
# Sort values of custom in-between
|
464 |
dff = dff.sort(condition1_chosen)
|
465 |
|
466 |
fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
|
467 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
468 |
+
hover_name='studies',template="seaborn")
|
469 |
|
470 |
fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
|
471 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
472 |
+
hover_name='studies',template="seaborn")
|
473 |
|
474 |
fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
|
475 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
476 |
+
hover_name='studies',template="seaborn")
|
477 |
|
478 |
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
479 |
size="percentage", size_max = 20,
|