Arts-of-coding commited on
Commit
f8ae0e2
·
1 Parent(s): d1d545b

Update pages/Cornea_v1_integrated_scVI.py

Browse files
Files changed (1) hide show
  1. pages/Cornea_v1_integrated_scVI.py +4 -4
pages/Cornea_v1_integrated_scVI.py CHANGED
@@ -49,10 +49,10 @@ col_mt = config.get("col_mt")
49
 
50
  #filepath = f"az://{path_parquet}"
51
 
52
- storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
53
 
54
  # Load in multiple dataframes
55
- df = pl.scan_parquet(f"./data/{dataset}.parquet", storage_options=storage_options).collect()
56
 
57
  # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
58
  tab2_content = html.Div([
@@ -165,7 +165,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
165
  )
166
  # Select ordering of plots
167
  if condition1_chosen == "integrated_cell_states":
168
- cat_ord= {condition1_chosen: ["LSC-1","LSC-2","LE","CE","Cj","qSK","SK","TSK","CF","EC","Ves","Mel","IC","nm-cSC","MC"]}
169
  else:
170
  cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
171
 
@@ -240,7 +240,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
240
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
241
  size="percentage", size_max = 20,
242
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
243
- hover_name=col_chosen,template="seaborn",category_orders={col_chosen: ["LSC-1","LSC-2","LE","CE","Cj","qSK","SK","TSK","CF","EC","Ves","Mel","IC","nm-cSC","MC"],"Gene": condition3_chosen})
244
  else:
245
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
246
  size="percentage", size_max = 20,
 
49
 
50
  #filepath = f"az://{path_parquet}"
51
 
52
+ #storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
53
 
54
  # Load in multiple dataframes
55
+ df = pl.scan_parquet(f"./data/{dataset}.parquet").collect() #, storage_options=storage_options
56
 
57
  # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
58
  tab2_content = html.Div([
 
165
  )
166
  # Select ordering of plots
167
  if condition1_chosen == "integrated_cell_states":
168
+ cat_ord= {condition1_chosen: ["LSC-1","LSC-2","LSE","CE","Cj","qSK","SK","TSK","CF","CEC","B/L EC","Mel","IC","nm-cSC","MC"]}
169
  else:
170
  cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
171
 
 
240
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
241
  size="percentage", size_max = 20,
242
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
243
+ hover_name=col_chosen,template="seaborn",category_orders={col_chosen: ["LSC-1","LSC-2","LSE","CE","Cj","qSK","SK","TSK","CF","CEC","B/L EC","Mel","IC","nm-cSC","MC"],"Gene": condition3_chosen})
244
  else:
245
  fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
246
  size="percentage", size_max = 20,