Commit
·
f8ae0e2
1
Parent(s):
d1d545b
Update pages/Cornea_v1_integrated_scVI.py
Browse files
pages/Cornea_v1_integrated_scVI.py
CHANGED
@@ -49,10 +49,10 @@ col_mt = config.get("col_mt")
|
|
49 |
|
50 |
#filepath = f"az://{path_parquet}"
|
51 |
|
52 |
-
storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
|
53 |
|
54 |
# Load in multiple dataframes
|
55 |
-
df = pl.scan_parquet(f"./data/{dataset}.parquet"
|
56 |
|
57 |
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
58 |
tab2_content = html.Div([
|
@@ -165,7 +165,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
165 |
)
|
166 |
# Select ordering of plots
|
167 |
if condition1_chosen == "integrated_cell_states":
|
168 |
-
cat_ord= {condition1_chosen: ["LSC-1","LSC-2","
|
169 |
else:
|
170 |
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
|
171 |
|
@@ -240,7 +240,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
240 |
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
241 |
size="percentage", size_max = 20,
|
242 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
243 |
-
hover_name=col_chosen,template="seaborn",category_orders={col_chosen: ["LSC-1","LSC-2","
|
244 |
else:
|
245 |
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
246 |
size="percentage", size_max = 20,
|
|
|
49 |
|
50 |
#filepath = f"az://{path_parquet}"
|
51 |
|
52 |
+
#storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False
|
53 |
|
54 |
# Load in multiple dataframes
|
55 |
+
df = pl.scan_parquet(f"./data/{dataset}.parquet").collect() #, storage_options=storage_options
|
56 |
|
57 |
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
58 |
tab2_content = html.Div([
|
|
|
165 |
)
|
166 |
# Select ordering of plots
|
167 |
if condition1_chosen == "integrated_cell_states":
|
168 |
+
cat_ord= {condition1_chosen: ["LSC-1","LSC-2","LSE","CE","Cj","qSK","SK","TSK","CF","CEC","B/L EC","Mel","IC","nm-cSC","MC"]}
|
169 |
else:
|
170 |
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
|
171 |
|
|
|
240 |
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
241 |
size="percentage", size_max = 20,
|
242 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
243 |
+
hover_name=col_chosen,template="seaborn",category_orders={col_chosen: ["LSC-1","LSC-2","LSE","CE","Cj","qSK","SK","TSK","CF","CEC","B/L EC","Mel","IC","nm-cSC","MC"],"Gene": condition3_chosen})
|
244 |
else:
|
245 |
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
246 |
size="percentage", size_max = 20,
|