Arts-of-coding commited on
Commit
5a3c0da
·
verified ·
1 Parent(s): 5e5594d

Delete pages/integratedaniridia.py

Browse files
Files changed (1) hide show
  1. pages/integratedaniridia.py +0 -539
pages/integratedaniridia.py DELETED
@@ -1,539 +0,0 @@
1
- # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
- # Shoutout to Coding-with-Adam for the initial template of the project:
3
- # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
-
5
- import dash
6
- from dash import dcc, html, Output, Input, callback
7
- import plotly.express as px
8
- import dash_callback_chain
9
- import yaml
10
- import polars as pl
11
- import os
12
- pl.enable_string_cache(False)
13
-
14
- dash.register_page(__name__, location="sidebar")
15
-
16
- dataset = "dataaniridia/integrated/sc_liu_aniridia_integrated_processed"
17
-
18
- # Set custom resolution for plots:
19
- config_fig = {
20
- 'toImageButtonOptions': {
21
- 'format': 'svg',
22
- 'filename': 'custom_image',
23
- 'height': 600,
24
- 'width': 700,
25
- 'scale': 1,
26
- }
27
- }
28
- from adlfs import AzureBlobFileSystem
29
- mountpount=os.environ['AZURE_MOUNT_POINT'],
30
- AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
31
- AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
32
-
33
- # Load in config file
34
- config_path = "./data/config.yaml"
35
-
36
- # Add the read-in data from the yaml file
37
- def read_config(filename):
38
- with open(filename, 'r') as yaml_file:
39
- config = yaml.safe_load(yaml_file)
40
- return config
41
-
42
- config = read_config(config_path)
43
- path_parquet = config.get("path_parquet")
44
- col_batch = config.get("col_batch")
45
- col_features = config.get("col_features")
46
- col_counts = config.get("col_counts")
47
- col_mt = config.get("col_mt")
48
-
49
- #filepath = f"az://{path_parquet}"
50
-
51
- storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY,'anon': False}
52
- #azfs = AzureBlobFileSystem(**storage_options )
53
-
54
- # Load in multiple dataframes
55
- df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options)
56
-
57
- # Setup the app
58
- #external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
59
- #app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
60
-
61
- #df = pl.read_parquet(filepath,storage_options=storage_options)
62
- #df = pl.DataFrame()
63
- #abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
64
- #df = df.rename({"__index_level_0__": "Unnamed: 0"})
65
-
66
- #df1 = pl.read_parquet(filepath, storage_options=storage_options)
67
-
68
- #df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
69
-
70
- #tab0_content = html.Div([
71
- # html.Label("Dataset chosen"),
72
- # dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
73
- # options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
74
- #])
75
-
76
- #@app.callback(
77
- # Input(component_id='dpdn1', component_property='value')
78
- #)
79
-
80
- #def update_filepath(dpdn1):
81
- # global df
82
- # if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
83
- # print("not identical filepath, chosing other")
84
- # df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
85
- # df = df2
86
- # return
87
-
88
- #df = pl.read_parquet(filepath, storage_options=storage_options)
89
- min_value = df[col_features].min()
90
- max_value = df[col_features].max()
91
-
92
- min_value_2 = df[col_counts].min()
93
- min_value_2 = round(min_value_2)
94
- max_value_2 = df[col_counts].max()
95
- max_value_2 = round(max_value_2)
96
-
97
- min_value_3 = df[col_mt].min()
98
- min_value_3 = round(min_value_3, 1)
99
- max_value_3 = df[col_mt].max()
100
- max_value_3 = round(max_value_3, 1)
101
-
102
- # Loads in the conditions specified in the yaml file
103
-
104
- # Note: Future version perhaps all values from a column in the dataframe of the parquet file
105
- # Note 2: This could also be a tsv of the categories and own specified colors
106
- #conditions = df[col_batch].unique().to_list()
107
- # Create the first tab content
108
- # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
109
-
110
- tab1_content = html.Div([
111
- html.Label("Column chosen"),
112
- dcc.Dropdown(id='dpdn2', value="batch", multi=False,
113
- options=df.columns),
114
- html.Label("N Genes by Counts"),
115
- dcc.RangeSlider(
116
- id='range-slider-1',
117
- step=250,
118
- value=[min_value, max_value],
119
- marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
120
- ),
121
- dcc.Input(id='min-slider-1', type='number', value=min_value, debounce=True),
122
- dcc.Input(id='max-slider-1', type='number', value=max_value, debounce=True),
123
- html.Label("Total Counts"),
124
- dcc.RangeSlider(
125
- id='range-slider-2',
126
- step=7500,
127
- value=[min_value_2, max_value_2],
128
- marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
129
- ),
130
- dcc.Input(id='min-slider-2', type='number', value=min_value_2, debounce=True),
131
- dcc.Input(id='max-slider-2', type='number', value=max_value_2, debounce=True),
132
- html.Label("Percent Mitochondrial Genes"),
133
- dcc.RangeSlider(
134
- id='range-slider-3',
135
- step=5,
136
- min=0,
137
- max=100,
138
- value=[min_value_3, max_value_3],
139
- ),
140
- dcc.Input(id='min-slider-3', type='number', value=min_value_3, debounce=True),
141
- dcc.Input(id='max-slider-3', type='number', value=max_value_3, debounce=True),
142
- html.Div([
143
- dcc.Graph(id='pie-graph', figure={}, className='four columns',config=config_fig),
144
- dcc.Graph(id='my-graph', figure={}, clickData=None, hoverData=None,
145
- className='four columns',config=config_fig
146
- ),
147
- dcc.Graph(id='scatter-plot', figure={}, className='four columns',config=config_fig)
148
- ]),
149
- html.Div([
150
- dcc.Graph(id='scatter-plot-2', figure={}, className='four columns',config=config_fig)
151
- ]),
152
- html.Div([
153
- dcc.Graph(id='scatter-plot-3', figure={}, className='four columns',config=config_fig)
154
- ]),
155
- html.Div([
156
- dcc.Graph(id='scatter-plot-4', figure={}, className='four columns',config=config_fig)
157
- ]),
158
- ])
159
-
160
- # Create the second tab content with scatter-plot-5 and scatter-plot-6
161
- tab2_content = html.Div([
162
- html.Div([
163
- html.Label("S-cycle genes"),
164
- dcc.Dropdown(id='dpdn3', value="Mcm5", multi=False,
165
- options=[
166
- "Cdc45",
167
- "Uhrf1",
168
- "Mcm2",
169
- "Slbp",
170
- "Mcm5",
171
- "Pola1",
172
- "Gmnn",
173
- "Cdc6",
174
- "Rrm2",
175
- "Atad2",
176
- "Dscc1",
177
- "Mcm4",
178
- "Chaf1b",
179
- "Rfc2",
180
- "Msh2",
181
- "Fen1",
182
- "Hells",
183
- "Prim1",
184
- "Tyms",
185
- "Mcm6",
186
- "Wdr76",
187
- "Rad51",
188
- "Pcna",
189
- "Ccne2",
190
- "Casp8ap2",
191
- "Usp1",
192
- "Nasp",
193
- "Rpa2",
194
- "Ung",
195
- "Rad51ap1",
196
- "Blm",
197
- "Pold3",
198
- "Rrm1",
199
- "Cenpu",
200
- "Gins2",
201
- "Tipin",
202
- "Brip1",
203
- "Dtl",
204
- "Exo1",
205
- "Ubr7",
206
- "Clspn",
207
- "E2f8",
208
- "Cdca7"
209
- ]),
210
- html.Label("G2M-cycle genes"),
211
- dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
212
- options=[
213
- "Ube2c",
214
- "Lbr",
215
- "Ctcf",
216
- "Cdc20",
217
- "Cbx5",
218
- "Kif11",
219
- "Anp32e",
220
- "Birc5",
221
- "Cdk1",
222
- "Tmpo",
223
- "Hmmr",
224
- "Pimreg",
225
- "Aurkb",
226
- "Top2a",
227
- "Gtse1",
228
- "Rangap1",
229
- "Cdca3",
230
- "Ndc80",
231
- "Kif20b",
232
- "Cenpf",
233
- "Nek2",
234
- "Nuf2",
235
- "Nusap1",
236
- "Bub1",
237
- "Tpx2",
238
- "Aurka",
239
- "Ect2",
240
- "Cks1b",
241
- "Kif2c",
242
- "Cdca8",
243
- "Cenpa",
244
- "Mki67",
245
- "Ccnb2",
246
- "Kif23",
247
- "Smc4",
248
- "G2e3",
249
- "Tubb4b",
250
- "Anln",
251
- "Tacc3",
252
- "Dlgap5",
253
- "Ckap2",
254
- "Ncapd2",
255
- "Ttk",
256
- "Ckap5",
257
- "Cdc25c",
258
- "Hjurp",
259
- "Cenpe",
260
- "Ckap2l",
261
- "Cdca2",
262
- "Hmgb2",
263
- "Cks2",
264
- "Psrc1",
265
- "Gas2l3"
266
- ]),
267
- ]),
268
- html.Div([
269
- dcc.Graph(id='scatter-plot-5', figure={}, className='three columns',config=config_fig)
270
- ]),
271
- html.Div([
272
- dcc.Graph(id='scatter-plot-6', figure={}, className='three columns',config=config_fig)
273
- ]),
274
- html.Div([
275
- dcc.Graph(id='scatter-plot-7', figure={}, className='three columns',config=config_fig)
276
- ]),
277
- html.Div([
278
- dcc.Graph(id='scatter-plot-8', figure={}, className='three columns',config=config_fig)
279
- ]),
280
- ])
281
-
282
- # Create the second tab content with scatter-plot-5 and scatter-plot-6
283
- tab3_content = html.Div([
284
- html.Div([
285
- html.Label("UMAP condition 1"),
286
- dcc.Dropdown(id='dpdn5', value="batch", multi=False,
287
- options=df.columns),
288
- html.Label("UMAP condition 2"),
289
- dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
290
- options=df.columns),
291
- html.Div([
292
- dcc.Graph(id='scatter-plot-9', figure={}, className='four columns',config=config_fig)
293
- ]),
294
- html.Div([
295
- dcc.Graph(id='scatter-plot-10', figure={}, className='four columns',config=config_fig)
296
- ]),
297
- html.Div([
298
- dcc.Graph(id='scatter-plot-11', figure={}, className='four columns',config=config_fig)
299
- ]),
300
- html.Div([
301
- dcc.Graph(id='my-graph2', figure={}, clickData=None, hoverData=None,
302
- className='four columns',config=config_fig
303
- )
304
- ]),
305
- ]),
306
- ])
307
- # html.Div([
308
- # dcc.Graph(id='scatter-plot-12', figure={}, className='four columns',config=config_fig)
309
- # ]),
310
-
311
-
312
- tab4_content = html.Div([
313
- html.Div([
314
- html.Label("Multi gene"),
315
- dcc.Dropdown(id='dpdn7', value=["Pax6","Krt15","Trp63","Krt14","Krt5","Sox9","Cdk8","Il31ra","Gpha2","Abl1","Areg","Lars2","Calml3","Krt13","Krt19","Psca","Muc20","Muc4","Aqp5","S100a8","S100a9","Lama3","Itgb4","Itga6","Lamc2","Cd44","Cdh1","Thy1","Dcn","Scn7a","Cdh19","Mpz","Ptprc","Cd52","Cd69","Cd86","Rgs5","Des","Myh11","Cd93","Pecam1","Abcg2","Lyve1","Mki67","Top2a","Ube2c","Birc5"], multi=True,
316
- options=df.columns),
317
- ]),
318
- html.Div([
319
- dcc.Graph(id='scatter-plot-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'}), # px)
320
- ]),
321
- ])
322
-
323
- # Define the tabs layout
324
- layout = html.Div([
325
- html.H1(f'Dataset analysis dashboard: {dataset}'),
326
- dcc.Tabs(id='tabs', style= {'width': 600,
327
- 'font-size': '100%',
328
- 'height': 50}, value='tab1',children=[
329
- #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
330
- dcc.Tab(label='QC', value='tab1', children=tab1_content),
331
- dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
332
- dcc.Tab(label='Custom', value='tab3', children=tab3_content),
333
- dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
334
- ]),
335
- ])
336
-
337
- # Define the circular callback
338
- @callback(
339
- Output("min-slider-1", "value"),
340
- Output("max-slider-1", "value"),
341
- Output("min-slider-2", "value"),
342
- Output("max-slider-2", "value"),
343
- Output("min-slider-3", "value"),
344
- Output("max-slider-3", "value"),
345
- Input("min-slider-1", "value"),
346
- Input("max-slider-1", "value"),
347
- Input("min-slider-2", "value"),
348
- Input("max-slider-2", "value"),
349
- Input("min-slider-3", "value"),
350
- Input("max-slider-3", "value"),
351
- )
352
- def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
353
- return min_1, max_1, min_2, max_2, min_3, max_3
354
-
355
- @callback(
356
- Output('range-slider-1', 'value'),
357
- Output('range-slider-2', 'value'),
358
- Output('range-slider-3', 'value'),
359
- Input('min-slider-1', 'value'),
360
- Input('max-slider-1', 'value'),
361
- Input('min-slider-2', 'value'),
362
- Input('max-slider-2', 'value'),
363
- Input('min-slider-3', 'value'),
364
- Input('max-slider-3', 'value'),
365
- )
366
- def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
367
- return [min_1, max_1], [min_2, max_2], [min_3, max_3]
368
-
369
- @callback(
370
- Output(component_id='my-graph', component_property='figure'),
371
- Output(component_id='pie-graph', component_property='figure'),
372
- Output(component_id='scatter-plot', component_property='figure'),
373
- Output(component_id='scatter-plot-2', component_property='figure'),
374
- Output(component_id='scatter-plot-3', component_property='figure'),
375
- Output(component_id='scatter-plot-4', component_property='figure'), # Add this new scatter plot
376
- Output(component_id='scatter-plot-5', component_property='figure'),
377
- Output(component_id='scatter-plot-6', component_property='figure'),
378
- Output(component_id='scatter-plot-7', component_property='figure'),
379
- Output(component_id='scatter-plot-8', component_property='figure'),
380
- Output(component_id='scatter-plot-9', component_property='figure'),
381
- Output(component_id='scatter-plot-10', component_property='figure'),
382
- Output(component_id='scatter-plot-11', component_property='figure'),
383
- Output(component_id='scatter-plot-12', component_property='figure'),
384
- Output(component_id='my-graph2', component_property='figure'),
385
- Input(component_id='dpdn2', component_property='value'),
386
- Input(component_id='dpdn3', component_property='value'),
387
- Input(component_id='dpdn4', component_property='value'),
388
- Input(component_id='dpdn5', component_property='value'),
389
- Input(component_id='dpdn6', component_property='value'),
390
- Input(component_id='dpdn7', component_property='value'),
391
- Input(component_id='range-slider-1', component_property='value'),
392
- Input(component_id='range-slider-2', component_property='value'),
393
- Input(component_id='range-slider-3', component_property='value'),
394
-
395
- )
396
-
397
- def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen, range_value_1, range_value_2, range_value_3): #batch_chosen,
398
- batch_chosen = df[col_chosen].unique().to_list()
399
- dff = df.filter(
400
- (pl.col(col_chosen).cast(str).is_in(batch_chosen)) &
401
- (pl.col(col_features) >= range_value_1[0]) &
402
- (pl.col(col_features) <= range_value_1[1]) &
403
- (pl.col(col_counts) >= range_value_2[0]) &
404
- (pl.col(col_counts) <= range_value_2[1]) &
405
- (pl.col(col_mt) >= range_value_3[0]) &
406
- (pl.col(col_mt) <= range_value_3[1])
407
- )
408
-
409
- #Drop categories that are not in the filtered data
410
- dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
411
-
412
- dff = dff.sort(col_chosen)
413
-
414
- # Plot figures
415
- fig_violin = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
416
- color=col_chosen, hover_name=col_chosen,template="seaborn")
417
-
418
- # Cache commonly used subexpressions
419
- total_count = pl.lit(len(dff))
420
- category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
421
- category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
422
-
423
- # Sort the dataframe
424
- #category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
425
-
426
- # Display the result
427
- total_cells = total_count # Calculate total number of cells
428
- pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
429
-
430
- # Calculate the mean expression
431
-
432
- # Melt wide format DataFrame into long format
433
- # Specify batch column as string type and gene columns as float type
434
- list_conds = condition3_chosen
435
- list_conds += [col_chosen]
436
- dff_pre = dff.select(list_conds)
437
-
438
- # Melt wide format DataFrame into long format
439
- dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
440
-
441
- # Calculate the mean expression levels for each gene in each region
442
- expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect()
443
-
444
- # Calculate the percentage total expressed
445
- dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
446
- count = 1
447
- dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
448
- dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
449
- dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
450
- dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
451
- result = dff_5.select([
452
- pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
453
- .then(pl.col('len') / pl.col('total')*100)
454
- .otherwise(None).alias("%"),
455
- ])
456
- result = result.with_columns(pl.col("%").fill_null(0))
457
- dff_5[["percentage"]] = result[["%"]]
458
- dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
459
-
460
- # Final part to join the percentage expressed and mean expression levels
461
- # TO DO
462
- expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
463
-
464
- # Order the dataframe on ascending categories
465
- expression_means = expression_means.sort(col_chosen, descending=True)
466
-
467
- #expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
468
- category_counts = category_counts.sort(col_chosen)
469
-
470
- fig_pie = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
471
-
472
- #labels = category_counts[col_chosen].to_list()
473
- #values = category_counts["normalized_count"].to_list()
474
-
475
- # Create the scatter plots
476
- fig_scatter = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
477
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
478
- hover_name='batch',template="seaborn")
479
-
480
- fig_scatter_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
481
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
482
- hover_name='batch',template="seaborn")
483
-
484
- fig_scatter_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
485
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
486
- hover_name='batch',template="seaborn")
487
-
488
-
489
- fig_scatter_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
490
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
491
- hover_name='batch',template="seaborn")
492
-
493
- fig_scatter_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
494
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
495
- hover_name='batch', title="S-cycle gene:",template="seaborn")
496
-
497
- fig_scatter_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
498
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
499
- hover_name='batch', title="G2M-cycle gene:",template="seaborn")
500
-
501
- fig_scatter_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
502
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
503
- hover_name='batch', title="S score:",template="seaborn")
504
-
505
- fig_scatter_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
506
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
507
- hover_name='batch', title="G2M score:",template="seaborn")
508
-
509
- # Sort values of custom in-between
510
- dff = dff.sort(condition1_chosen)
511
-
512
- fig_scatter_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
513
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
514
- hover_name='batch',template="seaborn")
515
-
516
- fig_scatter_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
517
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
518
- hover_name='batch',template="seaborn")
519
-
520
- fig_scatter_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
521
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
522
- hover_name='batch',template="seaborn")
523
-
524
- fig_scatter_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
525
- size="percentage", size_max = 20,
526
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
527
- hover_name=col_chosen,template="seaborn")
528
-
529
- fig_violin2 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
530
- color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
531
-
532
-
533
- return fig_violin, fig_pie, fig_scatter, fig_scatter_2, fig_scatter_3, fig_scatter_4, fig_scatter_5, fig_scatter_6, fig_scatter_7, fig_scatter_8, fig_scatter_9, fig_scatter_10, fig_scatter_11, fig_scatter_12, fig_violin2
534
-
535
- # Set http://localhost:5000/ in web browser
536
- # Now create your regular FASTAPI application
537
-
538
- #if __name__ == '__main__':
539
- # app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #