Arts-of-coding commited on
Commit
b597faf
·
verified ·
1 Parent(s): a182fe1

Delete pages/1mwt_aniridia.py

Browse files
Files changed (1) hide show
  1. pages/1mwt_aniridia.py +0 -542
pages/1mwt_aniridia.py DELETED
@@ -1,542 +0,0 @@
1
- # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
- # Shoutout to Coding-with-Adam for the initial template of the project:
3
- # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
-
5
- import dash
6
- from dash import dcc, html, Output, Input, callback
7
- import plotly.express as px
8
- import dash_callback_chain
9
- import yaml
10
- import polars as pl
11
- import os
12
- pl.enable_string_cache(False)
13
-
14
- dash.register_page(__name__, location="sidebar")
15
-
16
- dataset = "dataaniridia/1mwt/sc_liu_aniridia_1mwt_processed"
17
-
18
- # Set custom resolution for plots:
19
- config_fig = {
20
- 'toImageButtonOptions': {
21
- 'format': 'svg',
22
- 'filename': 'custom_image',
23
- 'height': 600,
24
- 'width': 700,
25
- 'scale': 1,
26
- }
27
- }
28
- from adlfs import AzureBlobFileSystem
29
- mountpount=os.environ['AZURE_MOUNT_POINT'],
30
- AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
31
- AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
32
-
33
- # Load in config file
34
- config_path = "./data/config.yaml"
35
-
36
- # Add the read-in data from the yaml file
37
- def read_config(filename):
38
- with open(filename, 'r') as yaml_file:
39
- config = yaml.safe_load(yaml_file)
40
- return config
41
-
42
- config = read_config(config_path)
43
- path_parquet = config.get("path_parquet")
44
- col_batch = config.get("col_batch")
45
- col_features = config.get("col_features")
46
- col_counts = config.get("col_counts")
47
- col_mt = config.get("col_mt")
48
-
49
- #filepath = f"az://{path_parquet}"
50
-
51
- storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY,'anon': False}
52
- #azfs = AzureBlobFileSystem(**storage_options )
53
-
54
- # Load in multiple dataframes
55
- df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options)
56
-
57
- # Setup the app
58
- #external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
59
- #app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
60
-
61
- #df = pl.read_parquet(filepath,storage_options=storage_options)
62
- #df = pl.DataFrame()
63
- #abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
64
- #df = df.rename({"__index_level_0__": "Unnamed: 0"})
65
-
66
- #df1 = pl.read_parquet(filepath, storage_options=storage_options)
67
-
68
- #df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
69
-
70
- #tab0_content = html.Div([
71
- # html.Label("Dataset chosen"),
72
- # dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
73
- # options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
74
- #])
75
-
76
- #@app.callback(
77
- # Input(component_id='dpdn1', component_property='value')
78
- #)
79
-
80
- #def update_filepath(dpdn1):
81
- # global df
82
- # if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
83
- # print("not identical filepath, chosing other")
84
- # df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
85
- # df = df2
86
- # return
87
-
88
- #df = pl.read_parquet(filepath, storage_options=storage_options)
89
- min_value = df[col_features].min()
90
- max_value = df[col_features].max()
91
-
92
- min_value_2 = df[col_counts].min()
93
- min_value_2 = round(min_value_2)
94
- max_value_2 = df[col_counts].max()
95
- max_value_2 = round(max_value_2)
96
-
97
- min_value_3 = df[col_mt].min()
98
- min_value_3 = round(min_value_3, 1)
99
- max_value_3 = df[col_mt].max()
100
- max_value_3 = round(max_value_3, 1)
101
-
102
- # Loads in the conditions specified in the yaml file
103
-
104
- # Note: Future version perhaps all values from a column in the dataframe of the parquet file
105
- # Note 2: This could also be a tsv of the categories and own specified colors
106
- #conditions = df[col_batch].unique().to_list()
107
- # Create the first tab content
108
- # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
109
-
110
- tab1_content = html.Div([
111
- html.Label("Column chosen"),
112
- dcc.Dropdown(id='dpdn2', value="batch", multi=False,
113
- options=df.columns),
114
- html.Label("N Genes by Counts"),
115
- dcc.RangeSlider(
116
- id='range-slider_db2-1',
117
- step=250,
118
- value=[min_value, max_value],
119
- marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
120
- ),
121
- dcc.Input(id='min-slider_db2-1', type='number', value=min_value, debounce=True),
122
- dcc.Input(id='max-slider_db2-1', type='number', value=max_value, debounce=True),
123
- html.Label("Total Counts"),
124
- dcc.RangeSlider(
125
- id='range-slider_db2-2',
126
- step=7500,
127
- value=[min_value_2, max_value_2],
128
- marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
129
- ),
130
- dcc.Input(id='min-slider_db2-2', type='number', value=min_value_2, debounce=True),
131
- dcc.Input(id='max-slider_db2-2', type='number', value=max_value_2, debounce=True),
132
- html.Label("Percent Mitochondrial Genes"),
133
- dcc.RangeSlider(
134
- id='range-slider_db2-3',
135
- step=5,
136
- min=0,
137
- max=100,
138
- value=[min_value_3, max_value_3],
139
- ),
140
- dcc.Input(id='min-slider_db2-3', type='number', value=min_value_3, debounce=True),
141
- dcc.Input(id='max-slider_db2-3', type='number', value=max_value_3, debounce=True),
142
- html.Div([
143
- dcc.Graph(id='pie-graph_db2', figure={}, className='four columns',config=config_fig),
144
- dcc.Graph(id='my-graph_db2', figure={}, clickData=None, hoverData=None,
145
- className='four columns',config=config_fig
146
- ),
147
- dcc.Graph(id='scatter-plot_db2', figure={}, className='four columns',config=config_fig)
148
- ]),
149
- html.Div([
150
- dcc.Graph(id='scatter-plot_db2-2', figure={}, className='four columns',config=config_fig)
151
- ]),
152
- html.Div([
153
- dcc.Graph(id='scatter-plot_db2-3', figure={}, className='four columns',config=config_fig)
154
- ]),
155
- html.Div([
156
- dcc.Graph(id='scatter-plot_db2-4', figure={}, className='four columns',config=config_fig)
157
- ]),
158
- ])
159
-
160
- # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
161
- tab2_content = html.Div([
162
- html.Div([
163
- html.Label("S-cycle genes"),
164
- dcc.Dropdown(id='dpdn3', value="Mcm5", multi=False,
165
- options=[
166
- "Cdc45",
167
- "Uhrf1",
168
- "Mcm2",
169
- "Slbp",
170
- "Mcm5",
171
- "Pola1",
172
- "Gmnn",
173
- "Cdc6",
174
- "Rrm2",
175
- "Atad2",
176
- "Dscc1",
177
- "Mcm4",
178
- "Chaf1b",
179
- "Rfc2",
180
- "Msh2",
181
- "Fen1",
182
- "Hells",
183
- "Prim1",
184
- "Tyms",
185
- "Mcm6",
186
- "Wdr76",
187
- "Rad51",
188
- "Pcna",
189
- "Ccne2",
190
- "Casp8ap2",
191
- "Usp1",
192
- "Nasp",
193
- "Rpa2",
194
- "Ung",
195
- "Rad51ap1",
196
- "Blm",
197
- "Pold3",
198
- "Rrm1",
199
- "Cenpu",
200
- "Gins2",
201
- "Tipin",
202
- "Brip1",
203
- "Dtl",
204
- "Exo1",
205
- "Ubr7",
206
- "Clspn",
207
- "E2f8",
208
- "Cdca7"
209
- ]),
210
- html.Label("G2M-cycle genes"),
211
- dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
212
- options=[
213
- "Ube2c",
214
- "Lbr",
215
- "Ctcf",
216
- "Cdc20",
217
- "Cbx5",
218
- "Kif11",
219
- "Anp32e",
220
- "Birc5",
221
- "Cdk1",
222
- "Tmpo",
223
- "Hmmr",
224
- "Pimreg",
225
- "Aurkb",
226
- "Top2a",
227
- "Gtse1",
228
- "Rangap1",
229
- "Cdca3",
230
- "Ndc80",
231
- "Kif20b",
232
- "Cenpf",
233
- "Nek2",
234
- "Nuf2",
235
- "Nusap1",
236
- "Bub1",
237
- "Tpx2",
238
- "Aurka",
239
- "Ect2",
240
- "Cks1b",
241
- "Kif2c",
242
- "Cdca8",
243
- "Cenpa",
244
- "Mki67",
245
- "Ccnb2",
246
- "Kif23",
247
- "Smc4",
248
- "G2e3",
249
- "Tubb4b",
250
- "Anln",
251
- "Tacc3",
252
- "Dlgap5",
253
- "Ckap2",
254
- "Ncapd2",
255
- "Ttk",
256
- "Ckap5",
257
- "Cdc25c",
258
- "Hjurp",
259
- "Cenpe",
260
- "Ckap2l",
261
- "Cdca2",
262
- "Hmgb2",
263
- "Cks2",
264
- "Psrc1",
265
- "Gas2l3"
266
- ]),
267
-
268
- ]),
269
- html.Div([
270
- dcc.Graph(id='scatter-plot_db2-5', figure={}, className='three columns',config=config_fig)
271
- ]),
272
- html.Div([
273
- dcc.Graph(id='scatter-plot_db2-6', figure={}, className='three columns',config=config_fig)
274
- ]),
275
- html.Div([
276
- dcc.Graph(id='scatter-plot_db2-7', figure={}, className='three columns',config=config_fig)
277
- ]),
278
- html.Div([
279
- dcc.Graph(id='scatter-plot_db2-8', figure={}, className='three columns',config=config_fig)
280
- ]),
281
- ])
282
-
283
- # Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
284
- tab3_content = html.Div([
285
- html.Div([
286
- html.Label("UMAP condition 1"),
287
- dcc.Dropdown(id='dpdn5', value="batch", multi=False,
288
- options=df.columns),
289
- html.Label("UMAP condition 2"),
290
- dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
291
- options=df.columns),
292
- html.Div([
293
- dcc.Graph(id='scatter-plot_db2-9', figure={}, className='four columns',config=config_fig)
294
- ]),
295
- html.Div([
296
- dcc.Graph(id='scatter-plot_db2-10', figure={}, className='four columns',config=config_fig)
297
- ]),
298
- html.Div([
299
- dcc.Graph(id='scatter-plot_db2-11', figure={}, className='four columns',config=config_fig)
300
- ]),
301
- html.Div([
302
- dcc.Graph(id='my-graph_db22', figure={}, clickData=None, hoverData=None,
303
- className='four columns',config=config_fig
304
- )
305
- ]),
306
- ]),
307
- ])
308
- # html.Div([
309
- # dcc.Graph(id='scatter-plot_db2-12', figure={}, className='four columns',config=config_fig)
310
- # ]),
311
-
312
-
313
- tab4_content = html.Div([
314
- html.Div([
315
- html.Label("Multi gene"),
316
- dcc.Dropdown(id='dpdn7', value=["Pax6","Krt15","Trp63","Krt14","Krt5","Sox9","Cdk8","Il31ra","Gpha2","Abl1","Areg","Lars2","Calml3","Krt13","Krt19","Psca","Muc20","Muc4","Aqp5","S100a8","S100a9","Lama3","Itgb4","Itga6","Lamc2","Cd44","Cdh1","Thy1","Dcn","Scn7a","Cdh19","Mpz","Ptprc","Cd52","Cd69","Cd86","Rgs5","Des","Myh11","Cd93","Pecam1","Abcg2","Lyve1","Mki67","Top2a","Ube2c","Birc5"], multi=True,
317
- options=df.columns),
318
- ]),
319
- html.Div([
320
- dcc.Graph(id='scatter-plot_db2-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'}), # px)
321
- ]),
322
- ])
323
-
324
- # Define the tabs layout
325
- layout = html.Div([
326
- html.H1(f'Dataset analysis dashboard: {dataset}'),
327
- dcc.Tabs(id='tabs', style= {'width': 600,
328
- 'font-size': '100%',
329
- 'height': 50}, value='tab1',children=[
330
- #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
331
- dcc.Tab(label='QC', value='tab1', children=tab1_content),
332
- dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
333
- dcc.Tab(label='Custom', value='tab3', children=tab3_content),
334
- dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
335
- ]),
336
- ])
337
-
338
- # Define the circular callback
339
- @callback(
340
- Output("min-slider_db2-1", "value"),
341
- Output("max-slider_db2-1", "value"),
342
- Output("min-slider_db2-2", "value"),
343
- Output("max-slider_db2-2", "value"),
344
- Output("min-slider_db2-3", "value"),
345
- Output("max-slider_db2-3", "value"),
346
- Input("min-slider_db2-1", "value"),
347
- Input("max-slider_db2-1", "value"),
348
- Input("min-slider_db2-2", "value"),
349
- Input("max-slider_db2-2", "value"),
350
- Input("min-slider_db2-3", "value"),
351
- Input("max-slider_db2-3", "value"),
352
-
353
- )
354
- def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
355
- return min_1, max_1, min_2, max_2, min_3, max_3
356
-
357
- @callback(
358
- Output('range-slider_db2-1', 'value'),
359
- Output('range-slider_db2-2', 'value'),
360
- Output('range-slider_db2-3', 'value'),
361
- Input('min-slider_db2-1', 'value'),
362
- Input('max-slider_db2-1', 'value'),
363
- Input('min-slider_db2-2', 'value'),
364
- Input('max-slider_db2-2', 'value'),
365
- Input('min-slider_db2-3', 'value'),
366
- Input('max-slider_db2-3', 'value'),
367
-
368
- )
369
- def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
370
- return [min_1, max_1], [min_2, max_2], [min_3, max_3]
371
-
372
- @callback(
373
- Output(component_id='my-graph_db2', component_property='figure'),
374
- Output(component_id='pie-graph_db2', component_property='figure'),
375
- Output(component_id='scatter-plot_db2', component_property='figure'),
376
- Output(component_id='scatter-plot_db2-2', component_property='figure'),
377
- Output(component_id='scatter-plot_db2-3', component_property='figure'),
378
- Output(component_id='scatter-plot_db2-4', component_property='figure'), # Add this new scatter plot
379
- Output(component_id='scatter-plot_db2-5', component_property='figure'),
380
- Output(component_id='scatter-plot_db2-6', component_property='figure'),
381
- Output(component_id='scatter-plot_db2-7', component_property='figure'),
382
- Output(component_id='scatter-plot_db2-8', component_property='figure'),
383
- Output(component_id='scatter-plot_db2-9', component_property='figure'),
384
- Output(component_id='scatter-plot_db2-10', component_property='figure'),
385
- Output(component_id='scatter-plot_db2-11', component_property='figure'),
386
- Output(component_id='scatter-plot_db2-12', component_property='figure'),
387
- Output(component_id='my-graph_db22', component_property='figure'),
388
- Input(component_id='dpdn2', component_property='value'),
389
- Input(component_id='dpdn3', component_property='value'),
390
- Input(component_id='dpdn4', component_property='value'),
391
- Input(component_id='dpdn5', component_property='value'),
392
- Input(component_id='dpdn6', component_property='value'),
393
- Input(component_id='dpdn7', component_property='value'),
394
- Input(component_id='range-slider_db2-1', component_property='value'),
395
- Input(component_id='range-slider_db2-2', component_property='value'),
396
- Input(component_id='range-slider_db2-3', component_property='value'),
397
-
398
- )
399
-
400
- def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen, range_value_1, range_value_2, range_value_3): #batch_chosen,
401
- batch_chosen = df[col_chosen].unique().to_list()
402
- dff = df.filter(
403
- (pl.col(col_chosen).cast(str).is_in(batch_chosen)) &
404
- (pl.col(col_features) >= range_value_1[0]) &
405
- (pl.col(col_features) <= range_value_1[1]) &
406
- (pl.col(col_counts) >= range_value_2[0]) &
407
- (pl.col(col_counts) <= range_value_2[1]) &
408
- (pl.col(col_mt) >= range_value_3[0]) &
409
- (pl.col(col_mt) <= range_value_3[1])
410
- )
411
-
412
- #Drop categories that are not in the filtered data
413
- dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
414
-
415
- dff = dff.sort(col_chosen)
416
-
417
- # Plot figures
418
- fig_violin_db2 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
419
- color=col_chosen, hover_name=col_chosen,template="seaborn")
420
-
421
- # Cache commonly used subexpressions
422
- total_count = pl.lit(len(dff))
423
- category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
424
- category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
425
-
426
- # Sort the dataframe
427
- #category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
428
-
429
- # Display the result
430
- total_cells = total_count # Calculate total number of cells
431
- pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
432
-
433
- # Calculate the mean expression
434
-
435
- # Melt wide format DataFrame into long format
436
- # Specify batch column as string type and gene columns as float type
437
- list_conds = condition3_chosen
438
- list_conds += [col_chosen]
439
- dff_pre = dff.select(list_conds)
440
-
441
- # Melt wide format DataFrame into long format
442
- dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
443
-
444
- # Calculate the mean expression levels for each gene in each region
445
- expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect()
446
-
447
- # Calculate the percentage total expressed
448
- dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
449
- count = 1
450
- dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
451
- dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
452
- dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
453
- dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
454
- result = dff_5.select([
455
- pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
456
- .then(pl.col('len') / pl.col('total')*100)
457
- .otherwise(None).alias("%"),
458
- ])
459
- result = result.with_columns(pl.col("%").fill_null(0))
460
- dff_5[["percentage"]] = result[["%"]]
461
- dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
462
-
463
- # Final part to join the percentage expressed and mean expression levels
464
- # TO DO
465
- expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
466
-
467
- # Order the dataframe on ascending categories
468
- expression_means = expression_means.sort(col_chosen, descending=True)
469
-
470
- #expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
471
- category_counts = category_counts.sort(col_chosen)
472
-
473
- fig_pie_db2 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
474
-
475
- #labels = category_counts[col_chosen].to_list()
476
- #values = category_counts["normalized_count"].to_list()
477
-
478
- # Create the scatter plots
479
- fig_scatter_db2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
480
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
481
- hover_name='batch',template="seaborn")
482
-
483
- fig_scatter_db2_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
484
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
485
- hover_name='batch',template="seaborn")
486
-
487
- fig_scatter_db2_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
488
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
489
- hover_name='batch',template="seaborn")
490
-
491
-
492
- fig_scatter_db2_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
493
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
494
- hover_name='batch',template="seaborn")
495
-
496
- fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
497
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
498
- hover_name='batch', title="S-cycle gene:",template="seaborn")
499
-
500
- fig_scatter_db2_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
501
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
502
- hover_name='batch', title="G2M-cycle gene:",template="seaborn")
503
-
504
- fig_scatter_db2_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
505
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
506
- hover_name='batch', title="S score:",template="seaborn")
507
-
508
- fig_scatter_db2_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
509
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
510
- hover_name='batch', title="G2M score:",template="seaborn")
511
-
512
- # Sort values of custom in-between
513
- dff = dff.sort(condition1_chosen)
514
-
515
- fig_scatter_db2_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
516
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
517
- hover_name='batch',template="seaborn")
518
-
519
- fig_scatter_db2_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
520
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
521
- hover_name='batch',template="seaborn")
522
-
523
- fig_scatter_db2_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
524
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
525
- hover_name='batch',template="seaborn")
526
-
527
- fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
528
- size="percentage", size_max = 20,
529
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
530
- hover_name=col_chosen,template="seaborn")
531
-
532
- fig_violin_db22 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
533
- color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
534
-
535
-
536
- return fig_violin_db2, fig_pie_db2, fig_scatter_db2, fig_scatter_db2_2, fig_scatter_db2_3, fig_scatter_db2_4, fig_scatter_db2_5, fig_scatter_db2_6, fig_scatter_db2_7, fig_scatter_db2_8, fig_scatter_db2_9, fig_scatter_db2_10, fig_scatter_db2_11, fig_scatter_db2_12, fig_violin_db22
537
-
538
- # Set http://localhost:5000/ in web browser
539
- # Now create your regular FASTAPI application
540
-
541
- #if __name__ == '__main__':
542
- # app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #