Arts-of-coding commited on
Commit
501b2f2
·
verified ·
1 Parent(s): bf01839

Update pages/Suture.py

Browse files
Files changed (1) hide show
  1. pages/Suture.py +33 -33
pages/Suture.py CHANGED
@@ -55,7 +55,7 @@ storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STO
55
  # Load in multiple dataframes
56
  df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect()
57
 
58
- # Create the second tab content with scatter-plot_db0-5 and scatter-plot_db0-6
59
  tab2_content = html.Div([
60
  html.Div([
61
  html.Label("S-cycle genes"),
@@ -164,20 +164,20 @@ tab2_content = html.Div([
164
  ]),
165
  ]),
166
  html.Div([
167
- dcc.Graph(id='scatter-plot_db0-5', figure={}, className='three columns',config=config_fig)
168
  ]),
169
  html.Div([
170
- dcc.Graph(id='scatter-plot_db0-6', figure={}, className='three columns',config=config_fig)
171
  ]),
172
  html.Div([
173
- dcc.Graph(id='scatter-plot_db0-7', figure={}, className='three columns',config=config_fig)
174
  ]),
175
  html.Div([
176
- dcc.Graph(id='scatter-plot_db0-8', figure={}, className='three columns',config=config_fig)
177
  ]),
178
  ])
179
 
180
- # Create the second tab content with scatter-plot_db0-5 and scatter-plot_db0-6
181
  tab3_content = html.Div([
182
  html.Div([
183
  html.Label("UMAP condition 1"),
@@ -187,16 +187,16 @@ tab3_content = html.Div([
187
  dcc.Dropdown(id='dpdn6', value="Pax6", multi=False,
188
  options=df.columns),
189
  html.Div([
190
- dcc.Graph(id='scatter-plot_db0-9', figure={}, className='four columns', hoverData=None ,config=config_fig)
191
  ]),
192
  html.Div([
193
- dcc.Graph(id='scatter-plot_db0-10', figure={}, className='four columns', hoverData=None, config=config_fig)
194
  ]),
195
  html.Div([
196
- dcc.Graph(id='scatter-plot_db0-11', figure={}, className='four columns',config=config_fig)
197
  ]),
198
  html.Div([
199
- dcc.Graph(id='my-graph_db02', figure={}, clickData=None, hoverData=None,
200
  className='four columns',config=config_fig
201
  )
202
  ]),
@@ -217,7 +217,7 @@ tab4_content = html.Div([
217
  options=df.columns),
218
  ]),
219
  html.Div([
220
- dcc.Graph(id='scatter-plot_db0-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
221
  ]),
222
  ])
223
 
@@ -236,15 +236,15 @@ layout = html.Div([
236
  ])
237
 
238
  @callback(
239
- Output(component_id='scatter-plot_db0-5', component_property='figure'),
240
- Output(component_id='scatter-plot_db0-6', component_property='figure'),
241
- Output(component_id='scatter-plot_db0-7', component_property='figure'),
242
- Output(component_id='scatter-plot_db0-8', component_property='figure'),
243
- Output(component_id='scatter-plot_db0-9', component_property='figure'),
244
- Output(component_id='scatter-plot_db0-10', component_property='figure'),
245
- Output(component_id='scatter-plot_db0-11', component_property='figure'),
246
- Output(component_id='scatter-plot_db0-12', component_property='figure'),
247
- Output(component_id='my-graph_db02', component_property='figure'),
248
  Input(component_id='dpdn2', component_property='value'),
249
  Input(component_id='dpdn3', component_property='value'),
250
  Input(component_id='dpdn4', component_property='value'),
@@ -298,53 +298,53 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
298
  # Final part to join the percentage expressed and mean expression levels
299
  expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
300
 
301
- fig_scatter_db0_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
302
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
303
  hover_name=None, title="S-cycle gene:",template="seaborn")
304
 
305
- fig_scatter_db0_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
306
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
307
  hover_name='condition', title="G2M-cycle gene:",template="seaborn")
308
 
309
- fig_scatter_db0_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
310
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
311
  hover_name='condition', title="S score:",template="seaborn")
312
 
313
- fig_scatter_db0_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
314
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
315
  hover_name='condition', title="G2M score:",template="seaborn")
316
 
317
  # Sort values of custom in-between
318
  dff = dff.sort(condition1_chosen)
319
 
320
- fig_scatter_db0_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
321
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
322
  hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord)
323
- fig_scatter_db0_9.update_traces(hoverinfo='none', hovertemplate=None)
324
- fig_scatter_db0_9.update_layout(hovermode=False)
325
 
326
- fig_scatter_db0_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
327
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
328
  hover_name='condition',template="seaborn")
329
 
330
- fig_scatter_db0_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
331
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
332
  hover_name='condition',template="seaborn",category_orders=cat_ord)
333
 
334
  # Reorder categories on natural sorting or on the integrated cell state order of the paper
335
  if col_chosen == "integrated_cell_states":
336
- fig_scatter_db0_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
337
  size="percentage", size_max = 20,
338
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
339
  hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique())})
340
  else:
341
- fig_scatter_db0_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
342
  size="percentage", size_max = 20,
343
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
344
  hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
345
 
346
- fig_violin_db02 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
347
  color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord)
348
 
349
 
350
- return fig_scatter_db0_5, fig_scatter_db0_6, fig_scatter_db0_7, fig_scatter_db0_8, fig_scatter_db0_9, fig_scatter_db0_10, fig_scatter_db0_11, fig_scatter_db0_12, fig_violin_db02
 
55
  # Load in multiple dataframes
56
  df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect()
57
 
58
+ # Create the second tab content with scatter-plot_db1-5 and scatter-plot_db1-6
59
  tab2_content = html.Div([
60
  html.Div([
61
  html.Label("S-cycle genes"),
 
164
  ]),
165
  ]),
166
  html.Div([
167
+ dcc.Graph(id='scatter-plot_db1-5', figure={}, className='three columns',config=config_fig)
168
  ]),
169
  html.Div([
170
+ dcc.Graph(id='scatter-plot_db1-6', figure={}, className='three columns',config=config_fig)
171
  ]),
172
  html.Div([
173
+ dcc.Graph(id='scatter-plot_db1-7', figure={}, className='three columns',config=config_fig)
174
  ]),
175
  html.Div([
176
+ dcc.Graph(id='scatter-plot_db1-8', figure={}, className='three columns',config=config_fig)
177
  ]),
178
  ])
179
 
180
+ # Create the second tab content with scatter-plot_db1-5 and scatter-plot_db1-6
181
  tab3_content = html.Div([
182
  html.Div([
183
  html.Label("UMAP condition 1"),
 
187
  dcc.Dropdown(id='dpdn6', value="Pax6", multi=False,
188
  options=df.columns),
189
  html.Div([
190
+ dcc.Graph(id='scatter-plot_db1-9', figure={}, className='four columns', hoverData=None ,config=config_fig)
191
  ]),
192
  html.Div([
193
+ dcc.Graph(id='scatter-plot_db1-10', figure={}, className='four columns', hoverData=None, config=config_fig)
194
  ]),
195
  html.Div([
196
+ dcc.Graph(id='scatter-plot_db1-11', figure={}, className='four columns',config=config_fig)
197
  ]),
198
  html.Div([
199
+ dcc.Graph(id='my-graph_db12', figure={}, clickData=None, hoverData=None,
200
  className='four columns',config=config_fig
201
  )
202
  ]),
 
217
  options=df.columns),
218
  ]),
219
  html.Div([
220
+ dcc.Graph(id='scatter-plot_db1-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'})
221
  ]),
222
  ])
223
 
 
236
  ])
237
 
238
  @callback(
239
+ Output(component_id='scatter-plot_db1-5', component_property='figure'),
240
+ Output(component_id='scatter-plot_db1-6', component_property='figure'),
241
+ Output(component_id='scatter-plot_db1-7', component_property='figure'),
242
+ Output(component_id='scatter-plot_db1-8', component_property='figure'),
243
+ Output(component_id='scatter-plot_db1-9', component_property='figure'),
244
+ Output(component_id='scatter-plot_db1-10', component_property='figure'),
245
+ Output(component_id='scatter-plot_db1-11', component_property='figure'),
246
+ Output(component_id='scatter-plot_db1-12', component_property='figure'),
247
+ Output(component_id='my-graph_db12', component_property='figure'),
248
  Input(component_id='dpdn2', component_property='value'),
249
  Input(component_id='dpdn3', component_property='value'),
250
  Input(component_id='dpdn4', component_property='value'),
 
298
  # Final part to join the percentage expressed and mean expression levels
299
  expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
300
 
301
+ fig_scatter_db1_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
302
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
303
  hover_name=None, title="S-cycle gene:",template="seaborn")
304
 
305
+ fig_scatter_db1_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
306
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
307
  hover_name='condition', title="G2M-cycle gene:",template="seaborn")
308
 
309
+ fig_scatter_db1_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
310
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
311
  hover_name='condition', title="S score:",template="seaborn")
312
 
313
+ fig_scatter_db1_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
314
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
315
  hover_name='condition', title="G2M score:",template="seaborn")
316
 
317
  # Sort values of custom in-between
318
  dff = dff.sort(condition1_chosen)
319
 
320
+ fig_scatter_db1_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
321
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
322
  hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord)
323
+ fig_scatter_db1_9.update_traces(hoverinfo='none', hovertemplate=None)
324
+ fig_scatter_db1_9.update_layout(hovermode=False)
325
 
326
+ fig_scatter_db1_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
327
  labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
328
  hover_name='condition',template="seaborn")
329
 
330
+ fig_scatter_db1_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
331
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
332
  hover_name='condition',template="seaborn",category_orders=cat_ord)
333
 
334
  # Reorder categories on natural sorting or on the integrated cell state order of the paper
335
  if col_chosen == "integrated_cell_states":
336
+ fig_scatter_db1_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
337
  size="percentage", size_max = 20,
338
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
339
  hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique())})
340
  else:
341
+ fig_scatter_db1_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
342
  size="percentage", size_max = 20,
343
  #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
344
  hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen})
345
 
346
+ fig_violin_db12 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
347
  color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord)
348
 
349
 
350
+ return fig_scatter_db1_5, fig_scatter_db1_6, fig_scatter_db1_7, fig_scatter_db1_8, fig_scatter_db1_9, fig_scatter_db1_10, fig_scatter_db1_11, fig_scatter_db1_12, fig_violin_db12