Spaces:
Running
Running
Update pages/No_suture.py
Browse files- pages/No_suture.py +0 -533
pages/No_suture.py
CHANGED
@@ -348,536 +348,3 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
348 |
|
349 |
|
350 |
return fig_scatter_db0_5, fig_scatter_db0_6, fig_scatter_db0_7, fig_scatter_db0_8, fig_scatter_db0_9, fig_scatter_db0_10, fig_scatter_db0_11, fig_scatter_db0_12, fig_violin_db02
|
351 |
-
import polars as pl
|
352 |
-
import os
|
353 |
-
pl.enable_string_cache(False)
|
354 |
-
|
355 |
-
dash.register_page(__name__, location="sidebar")
|
356 |
-
|
357 |
-
dataset = "datasuture/ctrl/sc_liu_suture_ctrl"
|
358 |
-
|
359 |
-
# Set custom resolution for plots:
|
360 |
-
config_fig = {
|
361 |
-
'toImageButtonOptions': {
|
362 |
-
'format': 'svg',
|
363 |
-
'filename': 'custom_image',
|
364 |
-
'height': 600,
|
365 |
-
'width': 700,
|
366 |
-
'scale': 1,
|
367 |
-
}
|
368 |
-
}
|
369 |
-
from adlfs import AzureBlobFileSystem
|
370 |
-
mountpount=os.environ['AZURE_MOUNT_POINT'],
|
371 |
-
AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
|
372 |
-
AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
|
373 |
-
|
374 |
-
# Load in config file
|
375 |
-
config_path = "./data/config.yaml"
|
376 |
-
|
377 |
-
# Add the read-in data from the yaml file
|
378 |
-
def read_config(filename):
|
379 |
-
with open(filename, 'r') as yaml_file:
|
380 |
-
config = yaml.safe_load(yaml_file)
|
381 |
-
return config
|
382 |
-
|
383 |
-
config = read_config(config_path)
|
384 |
-
path_parquet = config.get("path_parquet")
|
385 |
-
col_batch = config.get("col_batch")
|
386 |
-
col_features = config.get("col_features")
|
387 |
-
col_counts = config.get("col_counts")
|
388 |
-
col_mt = config.get("col_mt")
|
389 |
-
|
390 |
-
#filepath = f"az://{path_parquet}"
|
391 |
-
|
392 |
-
storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY,'anon': False}
|
393 |
-
#azfs = AzureBlobFileSystem(**storage_options )
|
394 |
-
|
395 |
-
# Load in multiple dataframes
|
396 |
-
df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options)
|
397 |
-
|
398 |
-
# Setup the app
|
399 |
-
#external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
|
400 |
-
#app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
|
401 |
-
|
402 |
-
#df = pl.read_parquet(filepath,storage_options=storage_options)
|
403 |
-
#df = pl.DataFrame()
|
404 |
-
#abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
|
405 |
-
#df = df.rename({"__index_level_0__": "Unnamed: 0"})
|
406 |
-
|
407 |
-
#df1 = pl.read_parquet(filepath, storage_options=storage_options)
|
408 |
-
|
409 |
-
#df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
|
410 |
-
|
411 |
-
#tab0_content = html.Div([
|
412 |
-
# html.Label("Dataset chosen"),
|
413 |
-
# dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
|
414 |
-
# options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
|
415 |
-
#])
|
416 |
-
|
417 |
-
#@app.callback(
|
418 |
-
# Input(component_id='dpdn1', component_property='value')
|
419 |
-
#)
|
420 |
-
|
421 |
-
#def update_filepath(dpdn1):
|
422 |
-
# global df
|
423 |
-
# if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
|
424 |
-
# print("not identical filepath, chosing other")
|
425 |
-
# df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
|
426 |
-
# df = df2
|
427 |
-
# return
|
428 |
-
|
429 |
-
#df = pl.read_parquet(filepath, storage_options=storage_options)
|
430 |
-
min_value = df[col_features].min()
|
431 |
-
max_value = df[col_features].max()
|
432 |
-
|
433 |
-
min_value_2 = df[col_counts].min()
|
434 |
-
min_value_2 = round(min_value_2)
|
435 |
-
max_value_2 = df[col_counts].max()
|
436 |
-
max_value_2 = round(max_value_2)
|
437 |
-
|
438 |
-
min_value_3 = df[col_mt].min()
|
439 |
-
min_value_3 = round(min_value_3, 1)
|
440 |
-
max_value_3 = df[col_mt].max()
|
441 |
-
max_value_3 = round(max_value_3, 1)
|
442 |
-
|
443 |
-
# Loads in the conditions specified in the yaml file
|
444 |
-
|
445 |
-
# Note: Future version perhaps all values from a column in the dataframe of the parquet file
|
446 |
-
# Note 2: This could also be a tsv of the categories and own specified colors
|
447 |
-
#conditions = df[col_batch].unique().to_list()
|
448 |
-
# Create the first tab content
|
449 |
-
# Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
|
450 |
-
|
451 |
-
tab1_content = html.Div([
|
452 |
-
html.Label("Column chosen"),
|
453 |
-
dcc.Dropdown(id='dpdn2', value="batch", multi=False,
|
454 |
-
options=df.columns),
|
455 |
-
html.Label("N Genes by Counts"),
|
456 |
-
dcc.RangeSlider(
|
457 |
-
id='range-slider_db0-1',
|
458 |
-
step=250,
|
459 |
-
value=[min_value, max_value],
|
460 |
-
marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
|
461 |
-
),
|
462 |
-
dcc.Input(id='min-slider_db0-1', type='number', value=min_value, debounce=True),
|
463 |
-
dcc.Input(id='max-slider_db0-1', type='number', value=max_value, debounce=True),
|
464 |
-
html.Label("Total Counts"),
|
465 |
-
dcc.RangeSlider(
|
466 |
-
id='range-slider_db0-2',
|
467 |
-
step=7500,
|
468 |
-
value=[min_value_2, max_value_2],
|
469 |
-
marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
|
470 |
-
),
|
471 |
-
dcc.Input(id='min-slider_db0-2', type='number', value=min_value_2, debounce=True),
|
472 |
-
dcc.Input(id='max-slider_db0-2', type='number', value=max_value_2, debounce=True),
|
473 |
-
html.Label("Percent Mitochondrial Genes"),
|
474 |
-
dcc.RangeSlider(
|
475 |
-
id='range-slider_db0-3',
|
476 |
-
step=5,
|
477 |
-
min=0,
|
478 |
-
max=100,
|
479 |
-
value=[min_value_3, max_value_3],
|
480 |
-
),
|
481 |
-
dcc.Input(id='min-slider_db0-3', type='number', value=min_value_3, debounce=True),
|
482 |
-
dcc.Input(id='max-slider_db0-3', type='number', value=max_value_3, debounce=True),
|
483 |
-
html.Div([
|
484 |
-
dcc.Graph(id='pie-graph_db0', figure={}, className='four columns',config=config_fig),
|
485 |
-
dcc.Graph(id='my-graph_db0', figure={}, clickData=None, hoverData=None,
|
486 |
-
className='four columns',config=config_fig
|
487 |
-
),
|
488 |
-
dcc.Graph(id='scatter-plot_db0', figure={}, className='four columns',config=config_fig)
|
489 |
-
]),
|
490 |
-
html.Div([
|
491 |
-
dcc.Graph(id='scatter-plot_db0-2', figure={}, className='four columns',config=config_fig)
|
492 |
-
]),
|
493 |
-
html.Div([
|
494 |
-
dcc.Graph(id='scatter-plot_db0-3', figure={}, className='four columns',config=config_fig)
|
495 |
-
]),
|
496 |
-
html.Div([
|
497 |
-
dcc.Graph(id='scatter-plot_db0-4', figure={}, className='four columns',config=config_fig)
|
498 |
-
]),
|
499 |
-
])
|
500 |
-
|
501 |
-
# Create the second tab content with scatter-plot_db0-5 and scatter-plot_db0-6
|
502 |
-
tab2_content = html.Div([
|
503 |
-
html.Div([
|
504 |
-
html.Label("S-cycle genes"),
|
505 |
-
dcc.Dropdown(id='dpdn3', value="Mcm5", multi=False,
|
506 |
-
options=[
|
507 |
-
"Cdc45",
|
508 |
-
"Uhrf1",
|
509 |
-
"Mcm2",
|
510 |
-
"Slbp",
|
511 |
-
"Mcm5",
|
512 |
-
"Pola1",
|
513 |
-
"Gmnn",
|
514 |
-
"Cdc6",
|
515 |
-
"Rrm2",
|
516 |
-
"Atad2",
|
517 |
-
"Dscc1",
|
518 |
-
"Mcm4",
|
519 |
-
"Chaf1b",
|
520 |
-
"Rfc2",
|
521 |
-
"Msh2",
|
522 |
-
"Fen1",
|
523 |
-
"Hells",
|
524 |
-
"Prim1",
|
525 |
-
"Tyms",
|
526 |
-
"Mcm6",
|
527 |
-
"Wdr76",
|
528 |
-
"Rad51",
|
529 |
-
"Pcna",
|
530 |
-
"Ccne2",
|
531 |
-
"Casp8ap2",
|
532 |
-
"Usp1",
|
533 |
-
"Nasp",
|
534 |
-
"Rpa2",
|
535 |
-
"Ung",
|
536 |
-
"Rad51ap1",
|
537 |
-
"Blm",
|
538 |
-
"Pold3",
|
539 |
-
"Rrm1",
|
540 |
-
"Cenpu",
|
541 |
-
"Gins2",
|
542 |
-
"Tipin",
|
543 |
-
"Brip1",
|
544 |
-
"Dtl",
|
545 |
-
"Exo1",
|
546 |
-
"Ubr7",
|
547 |
-
"Clspn",
|
548 |
-
"E2f8",
|
549 |
-
"Cdca7"
|
550 |
-
]),
|
551 |
-
html.Label("G2M-cycle genes"),
|
552 |
-
dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
|
553 |
-
options=[
|
554 |
-
"Ube2c",
|
555 |
-
"Lbr",
|
556 |
-
"Ctcf",
|
557 |
-
"Cdc20",
|
558 |
-
"Cbx5",
|
559 |
-
"Kif11",
|
560 |
-
"Anp32e",
|
561 |
-
"Birc5",
|
562 |
-
"Cdk1",
|
563 |
-
"Tmpo",
|
564 |
-
"Hmmr",
|
565 |
-
"Pimreg",
|
566 |
-
"Aurkb",
|
567 |
-
"Top2a",
|
568 |
-
"Gtse1",
|
569 |
-
"Rangap1",
|
570 |
-
"Cdca3",
|
571 |
-
"Ndc80",
|
572 |
-
"Kif20b",
|
573 |
-
"Cenpf",
|
574 |
-
"Nek2",
|
575 |
-
"Nuf2",
|
576 |
-
"Nusap1",
|
577 |
-
"Bub1",
|
578 |
-
"Tpx2",
|
579 |
-
"Aurka",
|
580 |
-
"Ect2",
|
581 |
-
"Cks1b",
|
582 |
-
"Kif2c",
|
583 |
-
"Cdca8",
|
584 |
-
"Cenpa",
|
585 |
-
"Mki67",
|
586 |
-
"Ccnb2",
|
587 |
-
"Kif23",
|
588 |
-
"Smc4",
|
589 |
-
"G2e3",
|
590 |
-
"Tubb4b",
|
591 |
-
"Anln",
|
592 |
-
"Tacc3",
|
593 |
-
"Dlgap5",
|
594 |
-
"Ckap2",
|
595 |
-
"Ncapd2",
|
596 |
-
"Ttk",
|
597 |
-
"Ckap5",
|
598 |
-
"Cdc25c",
|
599 |
-
"Hjurp",
|
600 |
-
"Cenpe",
|
601 |
-
"Ckap2l",
|
602 |
-
"Cdca2",
|
603 |
-
"Hmgb2",
|
604 |
-
"Cks2",
|
605 |
-
"Psrc1",
|
606 |
-
"Gas2l3"
|
607 |
-
]),
|
608 |
-
|
609 |
-
]),
|
610 |
-
html.Div([
|
611 |
-
dcc.Graph(id='scatter-plot_db0-5', figure={}, className='three columns',config=config_fig)
|
612 |
-
]),
|
613 |
-
html.Div([
|
614 |
-
dcc.Graph(id='scatter-plot_db0-6', figure={}, className='three columns',config=config_fig)
|
615 |
-
]),
|
616 |
-
html.Div([
|
617 |
-
dcc.Graph(id='scatter-plot_db0-7', figure={}, className='three columns',config=config_fig)
|
618 |
-
]),
|
619 |
-
html.Div([
|
620 |
-
dcc.Graph(id='scatter-plot_db0-8', figure={}, className='three columns',config=config_fig)
|
621 |
-
]),
|
622 |
-
])
|
623 |
-
|
624 |
-
# Create the second tab content with scatter-plot_db0-5 and scatter-plot_db0-6
|
625 |
-
tab3_content = html.Div([
|
626 |
-
html.Div([
|
627 |
-
html.Label("UMAP condition 1"),
|
628 |
-
dcc.Dropdown(id='dpdn5', value="batch", multi=False,
|
629 |
-
options=df.columns),
|
630 |
-
html.Label("UMAP condition 2"),
|
631 |
-
dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
|
632 |
-
options=df.columns),
|
633 |
-
html.Div([
|
634 |
-
dcc.Graph(id='scatter-plot_db0-9', figure={}, className='four columns',config=config_fig)
|
635 |
-
]),
|
636 |
-
html.Div([
|
637 |
-
dcc.Graph(id='scatter-plot_db0-10', figure={}, className='four columns',config=config_fig)
|
638 |
-
]),
|
639 |
-
html.Div([
|
640 |
-
dcc.Graph(id='scatter-plot_db0-11', figure={}, className='four columns',config=config_fig)
|
641 |
-
]),
|
642 |
-
html.Div([
|
643 |
-
dcc.Graph(id='my-graph_db02', figure={}, clickData=None, hoverData=None,
|
644 |
-
className='four columns',config=config_fig
|
645 |
-
)
|
646 |
-
]),
|
647 |
-
]),
|
648 |
-
])
|
649 |
-
# html.Div([
|
650 |
-
# dcc.Graph(id='scatter-plot_db0-12', figure={}, className='four columns',config=config_fig)
|
651 |
-
# ]),
|
652 |
-
|
653 |
-
|
654 |
-
tab4_content = html.Div([
|
655 |
-
html.Div([
|
656 |
-
html.Label("Multi gene"),
|
657 |
-
dcc.Dropdown(id='dpdn7', value=["Pax6","Krt15","Trp63","Krt14","Krt5","Sox9","Cdk8","Il31ra","Gpha2","Abl1","Areg","Lars2","Calml3","Krt13","Krt19","Psca","Muc20","Muc4","Aqp5","S100a8","S100a9","Lama3","Itgb4","Itga6","Lamc2","Cd44","Cdh1","Thy1","Dcn","Scn7a","Cdh19","Mpz","Ptprc","Cd52","Cd69","Cd86","Rgs5","Des","Myh11","Cd93","Pecam1","Abcg2","Lyve1","Mki67","Top2a","Ube2c","Birc5"], multi=True,
|
658 |
-
options=df.columns),
|
659 |
-
]),
|
660 |
-
html.Div([
|
661 |
-
dcc.Graph(id='scatter-plot_db0-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'}), # px)
|
662 |
-
]),
|
663 |
-
])
|
664 |
-
|
665 |
-
# Define the tabs layout
|
666 |
-
layout = html.Div([
|
667 |
-
html.H1(f'Dataset analysis dashboard: {dataset}'),
|
668 |
-
dcc.Tabs(id='tabs', style= {'width': 600,
|
669 |
-
'font-size': '100%',
|
670 |
-
'height': 50}, value='tab1',children=[
|
671 |
-
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
|
672 |
-
dcc.Tab(label='QC', value='tab1', children=tab1_content),
|
673 |
-
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
|
674 |
-
dcc.Tab(label='Custom', value='tab3', children=tab3_content),
|
675 |
-
dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
|
676 |
-
]),
|
677 |
-
])
|
678 |
-
|
679 |
-
# Define the circular callback
|
680 |
-
@callback(
|
681 |
-
Output("min-slider_db0-1", "value"),
|
682 |
-
Output("max-slider_db0-1", "value"),
|
683 |
-
Output("min-slider_db0-2", "value"),
|
684 |
-
Output("max-slider_db0-2", "value"),
|
685 |
-
Output("min-slider_db0-3", "value"),
|
686 |
-
Output("max-slider_db0-3", "value"),
|
687 |
-
Input("min-slider_db0-1", "value"),
|
688 |
-
Input("max-slider_db0-1", "value"),
|
689 |
-
Input("min-slider_db0-2", "value"),
|
690 |
-
Input("max-slider_db0-2", "value"),
|
691 |
-
Input("min-slider_db0-3", "value"),
|
692 |
-
Input("max-slider_db0-3", "value"),
|
693 |
-
|
694 |
-
)
|
695 |
-
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
|
696 |
-
return min_1, max_1, min_2, max_2, min_3, max_3
|
697 |
-
|
698 |
-
@callback(
|
699 |
-
Output('range-slider_db0-1', 'value'),
|
700 |
-
Output('range-slider_db0-2', 'value'),
|
701 |
-
Output('range-slider_db0-3', 'value'),
|
702 |
-
Input('min-slider_db0-1', 'value'),
|
703 |
-
Input('max-slider_db0-1', 'value'),
|
704 |
-
Input('min-slider_db0-2', 'value'),
|
705 |
-
Input('max-slider_db0-2', 'value'),
|
706 |
-
Input('min-slider_db0-3', 'value'),
|
707 |
-
Input('max-slider_db0-3', 'value'),
|
708 |
-
|
709 |
-
)
|
710 |
-
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
711 |
-
return [min_1, max_1], [min_2, max_2], [min_3, max_3]
|
712 |
-
|
713 |
-
@callback(
|
714 |
-
Output(component_id='my-graph_db0', component_property='figure'),
|
715 |
-
Output(component_id='pie-graph_db0', component_property='figure'),
|
716 |
-
Output(component_id='scatter-plot_db0', component_property='figure'),
|
717 |
-
Output(component_id='scatter-plot_db0-2', component_property='figure'),
|
718 |
-
Output(component_id='scatter-plot_db0-3', component_property='figure'),
|
719 |
-
Output(component_id='scatter-plot_db0-4', component_property='figure'), # Add this new scatter plot
|
720 |
-
Output(component_id='scatter-plot_db0-5', component_property='figure'),
|
721 |
-
Output(component_id='scatter-plot_db0-6', component_property='figure'),
|
722 |
-
Output(component_id='scatter-plot_db0-7', component_property='figure'),
|
723 |
-
Output(component_id='scatter-plot_db0-8', component_property='figure'),
|
724 |
-
Output(component_id='scatter-plot_db0-9', component_property='figure'),
|
725 |
-
Output(component_id='scatter-plot_db0-10', component_property='figure'),
|
726 |
-
Output(component_id='scatter-plot_db0-11', component_property='figure'),
|
727 |
-
Output(component_id='scatter-plot_db0-12', component_property='figure'),
|
728 |
-
Output(component_id='my-graph_db02', component_property='figure'),
|
729 |
-
Input(component_id='dpdn2', component_property='value'),
|
730 |
-
Input(component_id='dpdn3', component_property='value'),
|
731 |
-
Input(component_id='dpdn4', component_property='value'),
|
732 |
-
Input(component_id='dpdn5', component_property='value'),
|
733 |
-
Input(component_id='dpdn6', component_property='value'),
|
734 |
-
Input(component_id='dpdn7', component_property='value'),
|
735 |
-
Input(component_id='range-slider_db0-1', component_property='value'),
|
736 |
-
Input(component_id='range-slider_db0-2', component_property='value'),
|
737 |
-
Input(component_id='range-slider_db0-3', component_property='value'),
|
738 |
-
|
739 |
-
)
|
740 |
-
|
741 |
-
def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen, range_value_1, range_value_2, range_value_3): #batch_chosen,
|
742 |
-
batch_chosen = df[col_chosen].unique().to_list()
|
743 |
-
dff = df.filter(
|
744 |
-
(pl.col(col_chosen).cast(str).is_in(batch_chosen)) &
|
745 |
-
(pl.col(col_features) >= range_value_1[0]) &
|
746 |
-
(pl.col(col_features) <= range_value_1[1]) &
|
747 |
-
(pl.col(col_counts) >= range_value_2[0]) &
|
748 |
-
(pl.col(col_counts) <= range_value_2[1]) &
|
749 |
-
(pl.col(col_mt) >= range_value_3[0]) &
|
750 |
-
(pl.col(col_mt) <= range_value_3[1])
|
751 |
-
)
|
752 |
-
|
753 |
-
#Drop categories that are not in the filtered data
|
754 |
-
dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
|
755 |
-
|
756 |
-
dff = dff.sort(col_chosen)
|
757 |
-
|
758 |
-
# Plot figures
|
759 |
-
fig_violin_db0 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
|
760 |
-
color=col_chosen, hover_name=col_chosen,template="seaborn")
|
761 |
-
|
762 |
-
# Cache commonly used subexpressions
|
763 |
-
total_count = pl.lit(len(dff))
|
764 |
-
category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
|
765 |
-
category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
|
766 |
-
|
767 |
-
# Sort the dataframe
|
768 |
-
#category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
|
769 |
-
|
770 |
-
# Display the result
|
771 |
-
total_cells = total_count # Calculate total number of cells
|
772 |
-
pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
|
773 |
-
|
774 |
-
# Calculate the mean expression
|
775 |
-
|
776 |
-
# Melt wide format DataFrame into long format
|
777 |
-
# Specify batch column as string type and gene columns as float type
|
778 |
-
list_conds = condition3_chosen
|
779 |
-
list_conds += [col_chosen]
|
780 |
-
dff_pre = dff.select(list_conds)
|
781 |
-
|
782 |
-
# Melt wide format DataFrame into long format
|
783 |
-
dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
|
784 |
-
|
785 |
-
# Calculate the mean expression levels for each gene in each region
|
786 |
-
expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect()
|
787 |
-
|
788 |
-
# Calculate the percentage total expressed
|
789 |
-
dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
|
790 |
-
count = 1
|
791 |
-
dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
|
792 |
-
dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
|
793 |
-
dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
|
794 |
-
dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
|
795 |
-
result = dff_5.select([
|
796 |
-
pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
|
797 |
-
.then(pl.col('len') / pl.col('total')*100)
|
798 |
-
.otherwise(None).alias("%"),
|
799 |
-
])
|
800 |
-
result = result.with_columns(pl.col("%").fill_null(0))
|
801 |
-
dff_5[["percentage"]] = result[["%"]]
|
802 |
-
dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
|
803 |
-
|
804 |
-
# Final part to join the percentage expressed and mean expression levels
|
805 |
-
# TO DO
|
806 |
-
expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
|
807 |
-
|
808 |
-
# Order the dataframe on ascending categories
|
809 |
-
expression_means = expression_means.sort(col_chosen, descending=True)
|
810 |
-
|
811 |
-
#expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
|
812 |
-
category_counts = category_counts.sort(col_chosen)
|
813 |
-
|
814 |
-
fig_pie_db0 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
|
815 |
-
|
816 |
-
#labels = category_counts[col_chosen].to_list()
|
817 |
-
#values = category_counts["normalized_count"].to_list()
|
818 |
-
|
819 |
-
# Create the scatter plots
|
820 |
-
fig_scatter_db0 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
|
821 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
822 |
-
hover_name='batch',template="seaborn")
|
823 |
-
|
824 |
-
fig_scatter_db0_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
|
825 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
826 |
-
hover_name='batch',template="seaborn")
|
827 |
-
|
828 |
-
fig_scatter_db0_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
|
829 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
830 |
-
hover_name='batch',template="seaborn")
|
831 |
-
|
832 |
-
|
833 |
-
fig_scatter_db0_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
|
834 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
835 |
-
hover_name='batch',template="seaborn")
|
836 |
-
|
837 |
-
fig_scatter_db0_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
|
838 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
839 |
-
hover_name='batch', title="S-cycle gene:",template="seaborn")
|
840 |
-
|
841 |
-
fig_scatter_db0_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
|
842 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
843 |
-
hover_name='batch', title="G2M-cycle gene:",template="seaborn")
|
844 |
-
|
845 |
-
fig_scatter_db0_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
|
846 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
847 |
-
hover_name='batch', title="S score:",template="seaborn")
|
848 |
-
|
849 |
-
fig_scatter_db0_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
|
850 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
851 |
-
hover_name='batch', title="G2M score:",template="seaborn")
|
852 |
-
|
853 |
-
# Sort values of custom in-between
|
854 |
-
dff = dff.sort(condition1_chosen)
|
855 |
-
|
856 |
-
fig_scatter_db0_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
|
857 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
858 |
-
hover_name='batch',template="seaborn")
|
859 |
-
|
860 |
-
fig_scatter_db0_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
|
861 |
-
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
862 |
-
hover_name='batch',template="seaborn")
|
863 |
-
|
864 |
-
fig_scatter_db0_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
|
865 |
-
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
866 |
-
hover_name='batch',template="seaborn")
|
867 |
-
|
868 |
-
fig_scatter_db0_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
869 |
-
size="percentage", size_max = 20,
|
870 |
-
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
871 |
-
hover_name=col_chosen,template="seaborn")
|
872 |
-
|
873 |
-
fig_violin_db02 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
|
874 |
-
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
|
875 |
-
|
876 |
-
|
877 |
-
return fig_violin_db0, fig_pie_db0, fig_scatter_db0, fig_scatter_db0_2, fig_scatter_db0_3, fig_scatter_db0_4, fig_scatter_db0_5, fig_scatter_db0_6, fig_scatter_db0_7, fig_scatter_db0_8, fig_scatter_db0_9, fig_scatter_db0_10, fig_scatter_db0_11, fig_scatter_db0_12, fig_violin_db02
|
878 |
-
|
879 |
-
# Set http://localhost:5000/ in web browser
|
880 |
-
# Now create your regular FASTAPI application
|
881 |
-
|
882 |
-
#if __name__ == '__main__':
|
883 |
-
# app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #
|
|
|
348 |
|
349 |
|
350 |
return fig_scatter_db0_5, fig_scatter_db0_6, fig_scatter_db0_7, fig_scatter_db0_8, fig_scatter_db0_9, fig_scatter_db0_10, fig_scatter_db0_11, fig_scatter_db0_12, fig_violin_db02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|