Arts-of-coding commited on
Commit
95f8948
·
verified ·
1 Parent(s): 607f4a0

Update pages/No_suture.py

Browse files
Files changed (1) hide show
  1. pages/No_suture.py +0 -533
pages/No_suture.py CHANGED
@@ -348,536 +348,3 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
348
 
349
 
350
  return fig_scatter_db0_5, fig_scatter_db0_6, fig_scatter_db0_7, fig_scatter_db0_8, fig_scatter_db0_9, fig_scatter_db0_10, fig_scatter_db0_11, fig_scatter_db0_12, fig_violin_db02
351
- import polars as pl
352
- import os
353
- pl.enable_string_cache(False)
354
-
355
- dash.register_page(__name__, location="sidebar")
356
-
357
- dataset = "datasuture/ctrl/sc_liu_suture_ctrl"
358
-
359
- # Set custom resolution for plots:
360
- config_fig = {
361
- 'toImageButtonOptions': {
362
- 'format': 'svg',
363
- 'filename': 'custom_image',
364
- 'height': 600,
365
- 'width': 700,
366
- 'scale': 1,
367
- }
368
- }
369
- from adlfs import AzureBlobFileSystem
370
- mountpount=os.environ['AZURE_MOUNT_POINT'],
371
- AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY')
372
- AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT')
373
-
374
- # Load in config file
375
- config_path = "./data/config.yaml"
376
-
377
- # Add the read-in data from the yaml file
378
- def read_config(filename):
379
- with open(filename, 'r') as yaml_file:
380
- config = yaml.safe_load(yaml_file)
381
- return config
382
-
383
- config = read_config(config_path)
384
- path_parquet = config.get("path_parquet")
385
- col_batch = config.get("col_batch")
386
- col_features = config.get("col_features")
387
- col_counts = config.get("col_counts")
388
- col_mt = config.get("col_mt")
389
-
390
- #filepath = f"az://{path_parquet}"
391
-
392
- storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY,'anon': False}
393
- #azfs = AzureBlobFileSystem(**storage_options )
394
-
395
- # Load in multiple dataframes
396
- df = pl.read_parquet(f"az://{dataset}.parquet", storage_options=storage_options)
397
-
398
- # Setup the app
399
- #external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
400
- #app = dash.Dash(__name__, use_pages=True) #, requests_pathname_prefix='/dashboard1/'
401
-
402
- #df = pl.read_parquet(filepath,storage_options=storage_options)
403
- #df = pl.DataFrame()
404
- #abfs = AzureBlobFileSystem(account_name=accountname,account_key=accountkey)
405
- #df = df.rename({"__index_level_0__": "Unnamed: 0"})
406
-
407
- #df1 = pl.read_parquet(filepath, storage_options=storage_options)
408
-
409
- #df2 = pl.read_parquet(f"az://data10xflex/{dataset_chosen}.parquet", storage_options=storage_options)
410
-
411
- #tab0_content = html.Div([
412
- # html.Label("Dataset chosen"),
413
- # dcc.Dropdown(id='dpdn1', value="corg/10xflexcorg_umap_clusres", multi=False,
414
- # options=["corg/10xflexcorg_umap_clusres","d1011/10xflexd1011_umap_clusres"])
415
- #])
416
-
417
- #@app.callback(
418
- # Input(component_id='dpdn1', component_property='value')
419
- #)
420
-
421
- #def update_filepath(dpdn1):
422
- # global df
423
- # if str(f"az://data10xflex/{dpdn1}.parquet") != str(filepath):
424
- # print("not identical filepath, chosing other")
425
- # df2 = pl.read_parquet(f"az://data10xflex/{dpdn1}.parquet", storage_options=storage_options)
426
- # df = df2
427
- # return
428
-
429
- #df = pl.read_parquet(filepath, storage_options=storage_options)
430
- min_value = df[col_features].min()
431
- max_value = df[col_features].max()
432
-
433
- min_value_2 = df[col_counts].min()
434
- min_value_2 = round(min_value_2)
435
- max_value_2 = df[col_counts].max()
436
- max_value_2 = round(max_value_2)
437
-
438
- min_value_3 = df[col_mt].min()
439
- min_value_3 = round(min_value_3, 1)
440
- max_value_3 = df[col_mt].max()
441
- max_value_3 = round(max_value_3, 1)
442
-
443
- # Loads in the conditions specified in the yaml file
444
-
445
- # Note: Future version perhaps all values from a column in the dataframe of the parquet file
446
- # Note 2: This could also be a tsv of the categories and own specified colors
447
- #conditions = df[col_batch].unique().to_list()
448
- # Create the first tab content
449
- # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
450
-
451
- tab1_content = html.Div([
452
- html.Label("Column chosen"),
453
- dcc.Dropdown(id='dpdn2', value="batch", multi=False,
454
- options=df.columns),
455
- html.Label("N Genes by Counts"),
456
- dcc.RangeSlider(
457
- id='range-slider_db0-1',
458
- step=250,
459
- value=[min_value, max_value],
460
- marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
461
- ),
462
- dcc.Input(id='min-slider_db0-1', type='number', value=min_value, debounce=True),
463
- dcc.Input(id='max-slider_db0-1', type='number', value=max_value, debounce=True),
464
- html.Label("Total Counts"),
465
- dcc.RangeSlider(
466
- id='range-slider_db0-2',
467
- step=7500,
468
- value=[min_value_2, max_value_2],
469
- marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
470
- ),
471
- dcc.Input(id='min-slider_db0-2', type='number', value=min_value_2, debounce=True),
472
- dcc.Input(id='max-slider_db0-2', type='number', value=max_value_2, debounce=True),
473
- html.Label("Percent Mitochondrial Genes"),
474
- dcc.RangeSlider(
475
- id='range-slider_db0-3',
476
- step=5,
477
- min=0,
478
- max=100,
479
- value=[min_value_3, max_value_3],
480
- ),
481
- dcc.Input(id='min-slider_db0-3', type='number', value=min_value_3, debounce=True),
482
- dcc.Input(id='max-slider_db0-3', type='number', value=max_value_3, debounce=True),
483
- html.Div([
484
- dcc.Graph(id='pie-graph_db0', figure={}, className='four columns',config=config_fig),
485
- dcc.Graph(id='my-graph_db0', figure={}, clickData=None, hoverData=None,
486
- className='four columns',config=config_fig
487
- ),
488
- dcc.Graph(id='scatter-plot_db0', figure={}, className='four columns',config=config_fig)
489
- ]),
490
- html.Div([
491
- dcc.Graph(id='scatter-plot_db0-2', figure={}, className='four columns',config=config_fig)
492
- ]),
493
- html.Div([
494
- dcc.Graph(id='scatter-plot_db0-3', figure={}, className='four columns',config=config_fig)
495
- ]),
496
- html.Div([
497
- dcc.Graph(id='scatter-plot_db0-4', figure={}, className='four columns',config=config_fig)
498
- ]),
499
- ])
500
-
501
- # Create the second tab content with scatter-plot_db0-5 and scatter-plot_db0-6
502
- tab2_content = html.Div([
503
- html.Div([
504
- html.Label("S-cycle genes"),
505
- dcc.Dropdown(id='dpdn3', value="Mcm5", multi=False,
506
- options=[
507
- "Cdc45",
508
- "Uhrf1",
509
- "Mcm2",
510
- "Slbp",
511
- "Mcm5",
512
- "Pola1",
513
- "Gmnn",
514
- "Cdc6",
515
- "Rrm2",
516
- "Atad2",
517
- "Dscc1",
518
- "Mcm4",
519
- "Chaf1b",
520
- "Rfc2",
521
- "Msh2",
522
- "Fen1",
523
- "Hells",
524
- "Prim1",
525
- "Tyms",
526
- "Mcm6",
527
- "Wdr76",
528
- "Rad51",
529
- "Pcna",
530
- "Ccne2",
531
- "Casp8ap2",
532
- "Usp1",
533
- "Nasp",
534
- "Rpa2",
535
- "Ung",
536
- "Rad51ap1",
537
- "Blm",
538
- "Pold3",
539
- "Rrm1",
540
- "Cenpu",
541
- "Gins2",
542
- "Tipin",
543
- "Brip1",
544
- "Dtl",
545
- "Exo1",
546
- "Ubr7",
547
- "Clspn",
548
- "E2f8",
549
- "Cdca7"
550
- ]),
551
- html.Label("G2M-cycle genes"),
552
- dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
553
- options=[
554
- "Ube2c",
555
- "Lbr",
556
- "Ctcf",
557
- "Cdc20",
558
- "Cbx5",
559
- "Kif11",
560
- "Anp32e",
561
- "Birc5",
562
- "Cdk1",
563
- "Tmpo",
564
- "Hmmr",
565
- "Pimreg",
566
- "Aurkb",
567
- "Top2a",
568
- "Gtse1",
569
- "Rangap1",
570
- "Cdca3",
571
- "Ndc80",
572
- "Kif20b",
573
- "Cenpf",
574
- "Nek2",
575
- "Nuf2",
576
- "Nusap1",
577
- "Bub1",
578
- "Tpx2",
579
- "Aurka",
580
- "Ect2",
581
- "Cks1b",
582
- "Kif2c",
583
- "Cdca8",
584
- "Cenpa",
585
- "Mki67",
586
- "Ccnb2",
587
- "Kif23",
588
- "Smc4",
589
- "G2e3",
590
- "Tubb4b",
591
- "Anln",
592
- "Tacc3",
593
- "Dlgap5",
594
- "Ckap2",
595
- "Ncapd2",
596
- "Ttk",
597
- "Ckap5",
598
- "Cdc25c",
599
- "Hjurp",
600
- "Cenpe",
601
- "Ckap2l",
602
- "Cdca2",
603
- "Hmgb2",
604
- "Cks2",
605
- "Psrc1",
606
- "Gas2l3"
607
- ]),
608
-
609
- ]),
610
- html.Div([
611
- dcc.Graph(id='scatter-plot_db0-5', figure={}, className='three columns',config=config_fig)
612
- ]),
613
- html.Div([
614
- dcc.Graph(id='scatter-plot_db0-6', figure={}, className='three columns',config=config_fig)
615
- ]),
616
- html.Div([
617
- dcc.Graph(id='scatter-plot_db0-7', figure={}, className='three columns',config=config_fig)
618
- ]),
619
- html.Div([
620
- dcc.Graph(id='scatter-plot_db0-8', figure={}, className='three columns',config=config_fig)
621
- ]),
622
- ])
623
-
624
- # Create the second tab content with scatter-plot_db0-5 and scatter-plot_db0-6
625
- tab3_content = html.Div([
626
- html.Div([
627
- html.Label("UMAP condition 1"),
628
- dcc.Dropdown(id='dpdn5', value="batch", multi=False,
629
- options=df.columns),
630
- html.Label("UMAP condition 2"),
631
- dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
632
- options=df.columns),
633
- html.Div([
634
- dcc.Graph(id='scatter-plot_db0-9', figure={}, className='four columns',config=config_fig)
635
- ]),
636
- html.Div([
637
- dcc.Graph(id='scatter-plot_db0-10', figure={}, className='four columns',config=config_fig)
638
- ]),
639
- html.Div([
640
- dcc.Graph(id='scatter-plot_db0-11', figure={}, className='four columns',config=config_fig)
641
- ]),
642
- html.Div([
643
- dcc.Graph(id='my-graph_db02', figure={}, clickData=None, hoverData=None,
644
- className='four columns',config=config_fig
645
- )
646
- ]),
647
- ]),
648
- ])
649
- # html.Div([
650
- # dcc.Graph(id='scatter-plot_db0-12', figure={}, className='four columns',config=config_fig)
651
- # ]),
652
-
653
-
654
- tab4_content = html.Div([
655
- html.Div([
656
- html.Label("Multi gene"),
657
- dcc.Dropdown(id='dpdn7', value=["Pax6","Krt15","Trp63","Krt14","Krt5","Sox9","Cdk8","Il31ra","Gpha2","Abl1","Areg","Lars2","Calml3","Krt13","Krt19","Psca","Muc20","Muc4","Aqp5","S100a8","S100a9","Lama3","Itgb4","Itga6","Lamc2","Cd44","Cdh1","Thy1","Dcn","Scn7a","Cdh19","Mpz","Ptprc","Cd52","Cd69","Cd86","Rgs5","Des","Myh11","Cd93","Pecam1","Abcg2","Lyve1","Mki67","Top2a","Ube2c","Birc5"], multi=True,
658
- options=df.columns),
659
- ]),
660
- html.Div([
661
- dcc.Graph(id='scatter-plot_db0-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'}), # px)
662
- ]),
663
- ])
664
-
665
- # Define the tabs layout
666
- layout = html.Div([
667
- html.H1(f'Dataset analysis dashboard: {dataset}'),
668
- dcc.Tabs(id='tabs', style= {'width': 600,
669
- 'font-size': '100%',
670
- 'height': 50}, value='tab1',children=[
671
- #dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
672
- dcc.Tab(label='QC', value='tab1', children=tab1_content),
673
- dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
674
- dcc.Tab(label='Custom', value='tab3', children=tab3_content),
675
- dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
676
- ]),
677
- ])
678
-
679
- # Define the circular callback
680
- @callback(
681
- Output("min-slider_db0-1", "value"),
682
- Output("max-slider_db0-1", "value"),
683
- Output("min-slider_db0-2", "value"),
684
- Output("max-slider_db0-2", "value"),
685
- Output("min-slider_db0-3", "value"),
686
- Output("max-slider_db0-3", "value"),
687
- Input("min-slider_db0-1", "value"),
688
- Input("max-slider_db0-1", "value"),
689
- Input("min-slider_db0-2", "value"),
690
- Input("max-slider_db0-2", "value"),
691
- Input("min-slider_db0-3", "value"),
692
- Input("max-slider_db0-3", "value"),
693
-
694
- )
695
- def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
696
- return min_1, max_1, min_2, max_2, min_3, max_3
697
-
698
- @callback(
699
- Output('range-slider_db0-1', 'value'),
700
- Output('range-slider_db0-2', 'value'),
701
- Output('range-slider_db0-3', 'value'),
702
- Input('min-slider_db0-1', 'value'),
703
- Input('max-slider_db0-1', 'value'),
704
- Input('min-slider_db0-2', 'value'),
705
- Input('max-slider_db0-2', 'value'),
706
- Input('min-slider_db0-3', 'value'),
707
- Input('max-slider_db0-3', 'value'),
708
-
709
- )
710
- def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
711
- return [min_1, max_1], [min_2, max_2], [min_3, max_3]
712
-
713
- @callback(
714
- Output(component_id='my-graph_db0', component_property='figure'),
715
- Output(component_id='pie-graph_db0', component_property='figure'),
716
- Output(component_id='scatter-plot_db0', component_property='figure'),
717
- Output(component_id='scatter-plot_db0-2', component_property='figure'),
718
- Output(component_id='scatter-plot_db0-3', component_property='figure'),
719
- Output(component_id='scatter-plot_db0-4', component_property='figure'), # Add this new scatter plot
720
- Output(component_id='scatter-plot_db0-5', component_property='figure'),
721
- Output(component_id='scatter-plot_db0-6', component_property='figure'),
722
- Output(component_id='scatter-plot_db0-7', component_property='figure'),
723
- Output(component_id='scatter-plot_db0-8', component_property='figure'),
724
- Output(component_id='scatter-plot_db0-9', component_property='figure'),
725
- Output(component_id='scatter-plot_db0-10', component_property='figure'),
726
- Output(component_id='scatter-plot_db0-11', component_property='figure'),
727
- Output(component_id='scatter-plot_db0-12', component_property='figure'),
728
- Output(component_id='my-graph_db02', component_property='figure'),
729
- Input(component_id='dpdn2', component_property='value'),
730
- Input(component_id='dpdn3', component_property='value'),
731
- Input(component_id='dpdn4', component_property='value'),
732
- Input(component_id='dpdn5', component_property='value'),
733
- Input(component_id='dpdn6', component_property='value'),
734
- Input(component_id='dpdn7', component_property='value'),
735
- Input(component_id='range-slider_db0-1', component_property='value'),
736
- Input(component_id='range-slider_db0-2', component_property='value'),
737
- Input(component_id='range-slider_db0-3', component_property='value'),
738
-
739
- )
740
-
741
- def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen, range_value_1, range_value_2, range_value_3): #batch_chosen,
742
- batch_chosen = df[col_chosen].unique().to_list()
743
- dff = df.filter(
744
- (pl.col(col_chosen).cast(str).is_in(batch_chosen)) &
745
- (pl.col(col_features) >= range_value_1[0]) &
746
- (pl.col(col_features) <= range_value_1[1]) &
747
- (pl.col(col_counts) >= range_value_2[0]) &
748
- (pl.col(col_counts) <= range_value_2[1]) &
749
- (pl.col(col_mt) >= range_value_3[0]) &
750
- (pl.col(col_mt) <= range_value_3[1])
751
- )
752
-
753
- #Drop categories that are not in the filtered data
754
- dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
755
-
756
- dff = dff.sort(col_chosen)
757
-
758
- # Plot figures
759
- fig_violin_db0 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
760
- color=col_chosen, hover_name=col_chosen,template="seaborn")
761
-
762
- # Cache commonly used subexpressions
763
- total_count = pl.lit(len(dff))
764
- category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
765
- category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
766
-
767
- # Sort the dataframe
768
- #category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
769
-
770
- # Display the result
771
- total_cells = total_count # Calculate total number of cells
772
- pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
773
-
774
- # Calculate the mean expression
775
-
776
- # Melt wide format DataFrame into long format
777
- # Specify batch column as string type and gene columns as float type
778
- list_conds = condition3_chosen
779
- list_conds += [col_chosen]
780
- dff_pre = dff.select(list_conds)
781
-
782
- # Melt wide format DataFrame into long format
783
- dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression")
784
-
785
- # Calculate the mean expression levels for each gene in each region
786
- expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect()
787
-
788
- # Calculate the percentage total expressed
789
- dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len())
790
- count = 1
791
- dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len"))
792
- dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len"))
793
- dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total"))
794
- dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer")
795
- result = dff_5.select([
796
- pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null()))
797
- .then(pl.col('len') / pl.col('total')*100)
798
- .otherwise(None).alias("%"),
799
- ])
800
- result = result.with_columns(pl.col("%").fill_null(0))
801
- dff_5[["percentage"]] = result[["%"]]
802
- dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage"))
803
-
804
- # Final part to join the percentage expressed and mean expression levels
805
- # TO DO
806
- expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner")
807
-
808
- # Order the dataframe on ascending categories
809
- expression_means = expression_means.sort(col_chosen, descending=True)
810
-
811
- #expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
812
- category_counts = category_counts.sort(col_chosen)
813
-
814
- fig_pie_db0 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
815
-
816
- #labels = category_counts[col_chosen].to_list()
817
- #values = category_counts["normalized_count"].to_list()
818
-
819
- # Create the scatter plots
820
- fig_scatter_db0 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
821
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
822
- hover_name='batch',template="seaborn")
823
-
824
- fig_scatter_db0_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
825
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
826
- hover_name='batch',template="seaborn")
827
-
828
- fig_scatter_db0_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
829
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
830
- hover_name='batch',template="seaborn")
831
-
832
-
833
- fig_scatter_db0_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
834
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
835
- hover_name='batch',template="seaborn")
836
-
837
- fig_scatter_db0_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
838
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
839
- hover_name='batch', title="S-cycle gene:",template="seaborn")
840
-
841
- fig_scatter_db0_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
842
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
843
- hover_name='batch', title="G2M-cycle gene:",template="seaborn")
844
-
845
- fig_scatter_db0_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
846
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
847
- hover_name='batch', title="S score:",template="seaborn")
848
-
849
- fig_scatter_db0_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
850
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
851
- hover_name='batch', title="G2M score:",template="seaborn")
852
-
853
- # Sort values of custom in-between
854
- dff = dff.sort(condition1_chosen)
855
-
856
- fig_scatter_db0_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
857
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
858
- hover_name='batch',template="seaborn")
859
-
860
- fig_scatter_db0_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
861
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
862
- hover_name='batch',template="seaborn")
863
-
864
- fig_scatter_db0_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen,
865
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
866
- hover_name='batch',template="seaborn")
867
-
868
- fig_scatter_db0_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
869
- size="percentage", size_max = 20,
870
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
871
- hover_name=col_chosen,template="seaborn")
872
-
873
- fig_violin_db02 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
874
- color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
875
-
876
-
877
- return fig_violin_db0, fig_pie_db0, fig_scatter_db0, fig_scatter_db0_2, fig_scatter_db0_3, fig_scatter_db0_4, fig_scatter_db0_5, fig_scatter_db0_6, fig_scatter_db0_7, fig_scatter_db0_8, fig_scatter_db0_9, fig_scatter_db0_10, fig_scatter_db0_11, fig_scatter_db0_12, fig_violin_db02
878
-
879
- # Set http://localhost:5000/ in web browser
880
- # Now create your regular FASTAPI application
881
-
882
- #if __name__ == '__main__':
883
- # app.run_server(debug=False, use_reloader=False, host='0.0.0.0', port=5000) #
 
348
 
349
 
350
  return fig_scatter_db0_5, fig_scatter_db0_6, fig_scatter_db0_7, fig_scatter_db0_8, fig_scatter_db0_9, fig_scatter_db0_10, fig_scatter_db0_11, fig_scatter_db0_12, fig_violin_db02