# Dash app to visualize scRNA-seq data quality control metrics from scanpy objects # Shoutout to Coding-with-Adam for the initial template of the project: # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py import dash from dash import dcc, html, Output, Input, callback import plotly.express as px import dash_callback_chain import yaml import polars as pl import os from natsort import natsorted #pl.enable_string_cache(False) dash.register_page(__name__, location="sidebar") dataset = "datasuture/pbs/Suture_polars" # Set custom resolution for plots: config_fig = { 'toImageButtonOptions': { 'format': 'svg', 'filename': 'custom_image', 'height': 600, 'width': 700, 'scale': 1, } } from adlfs import AzureBlobFileSystem mountpount=os.environ['AZURE_MOUNT_POINT'], AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY') AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT') # Load in config file config_path = "./data/config.yaml" # Add the read-in data from the yaml file def read_config(filename): with open(filename, 'r') as yaml_file: config = yaml.safe_load(yaml_file) return config config = read_config(config_path) path_parquet = config.get("path_parquet") col_batch = config.get("col_batch") col_features = config.get("col_features") col_counts = config.get("col_counts") col_mt = config.get("col_mt") #filepath = f"az://{path_parquet}" storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #, 'anon': False #azfs = AzureBlobFileSystem(**storage_options ) # Load in multiple dataframes df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect() # Create the second tab content with scatter-plot_db1-5 and scatter-plot_db1-6 tab2_content = html.Div([ html.Div([ html.Label("S-cycle genes"), dcc.Dropdown(id='dpdn3', value="Mcm5", multi=False, options=[ "Cdc45", "Uhrf1", "Mcm2", "Slbp", "Mcm5", "Pola1", "Gmnn", "Cdc6", "Rrm2", "Atad2", "Dscc1", "Mcm4", "Chaf1b", "Rfc2", "Msh2", "Fen1", "Hells", "Prim1", "Tyms", "Mcm6", "Wdr76", "Rad51", "Pcna", "Ccne2", "Casp8ap2", "Usp1", "Nasp", "Rpa2", "Ung", "Rad51ap1", "Blm", "Pold3", "Rrm1", "Cenpu", "Gins2", "Tipin", "Brip1", "Dtl", "Exo1", "Ubr7", "Clspn", "E2f8", "Cdca7" ]), html.Label("G2M-cycle genes"), dcc.Dropdown(id='dpdn4', value="Top2a", multi=False, options=[ "Ube2c", "Lbr", "Ctcf", "Cdc20", "Cbx5", "Kif11", "Anp32e", "Birc5", "Cdk1", "Tmpo", "Hmmr", "Pimreg", "Aurkb", "Top2a", "Gtse1", "Rangap1", "Cdca3", "Ndc80", "Kif20b", "Cenpf", "Nek2", "Nuf2", "Nusap1", "Bub1", "Tpx2", "Aurka", "Ect2", "Cks1b", "Kif2c", "Cdca8", "Cenpa", "Mki67", "Ccnb2", "Kif23", "Smc4", "G2e3", "Tubb4b", "Anln", "Tacc3", "Dlgap5", "Ckap2", "Ncapd2", "Ttk", "Ckap5", "Cdc25c", "Hjurp", "Cenpe", "Ckap2l", "Cdca2", "Hmgb2", "Cks2", "Psrc1", "Gas2l3" ]), ]), html.Div([ dcc.Graph(id='scatter-plot_db1-5', figure={}, className='three columns',config=config_fig) ]), html.Div([ dcc.Graph(id='scatter-plot_db1-6', figure={}, className='three columns',config=config_fig) ]), html.Div([ dcc.Graph(id='scatter-plot_db1-7', figure={}, className='three columns',config=config_fig) ]), html.Div([ dcc.Graph(id='scatter-plot_db1-8', figure={}, className='three columns',config=config_fig) ]), ]) # Create the second tab content with scatter-plot_db1-5 and scatter-plot_db1-6 tab3_content = html.Div([ html.Div([ html.Label("UMAP condition 1"), dcc.Dropdown(id='dpdn5', value="condition", multi=False, options=df.columns), html.Label("UMAP condition 2"), dcc.Dropdown(id='dpdn6', value="Pax6", multi=False, options=df.columns), html.Div([ dcc.Graph(id='scatter-plot_db1-9', figure={}, className='four columns', hoverData=None ,config=config_fig) ]), html.Div([ dcc.Graph(id='scatter-plot_db1-10', figure={}, className='four columns', hoverData=None, config=config_fig) ]), html.Div([ dcc.Graph(id='scatter-plot_db1-11', figure={}, className='four columns',config=config_fig) ]), html.Div([ dcc.Graph(id='my-graph_db12', figure={}, clickData=None, hoverData=None, className='four columns',config=config_fig ) ]), ]), ]) tab4_content = html.Div([ html.Label("Column chosen"), dcc.Dropdown(id='dpdn2', value="cell states", multi=False, options=df.columns), html.Div([ html.Label("Multi gene"), dcc.Dropdown(id='dpdn7', value=["Pax6","Sox9","Cdk8","Il31ra","Gpha2", "Areg","Krt13","Krt19","Psca","Muc20", "S100a9","Lama3","Itgb4","Itga6","Thy1","Dcn","Scn7a", "Cdh19","Mpz","Ptprc","Cd52","Cd69","Cd86","Rgs5","Des","Myh11","Cd93","Pecam1", "Abcg2","Lyve1","Mki67"], multi=True, options=df.columns), ]), html.Div([ dcc.Graph(id='scatter-plot_db1-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'}) ]), ]) # Define the tabs layout layout = html.Div([ html.H1(f'Dataset analysis dashboard: {dataset}'), dcc.Tabs(id='tabs', style= {'width': 600, 'font-size': '100%', 'height': 50}, value='tab1',children=[ #dcc.Tab(label='Dataset', value='tab0', children=tab0_content), #dcc.Tab(label='QC', value='tab1', children=tab1_content), dcc.Tab(label='UMAP visualisation', value='tab3', children=tab3_content), dcc.Tab(label='Multi dot', value='tab4', children=tab4_content), dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content), ]), ]) @callback( Output(component_id='scatter-plot_db1-5', component_property='figure'), Output(component_id='scatter-plot_db1-6', component_property='figure'), Output(component_id='scatter-plot_db1-7', component_property='figure'), Output(component_id='scatter-plot_db1-8', component_property='figure'), Output(component_id='scatter-plot_db1-9', component_property='figure'), Output(component_id='scatter-plot_db1-10', component_property='figure'), Output(component_id='scatter-plot_db1-11', component_property='figure'), Output(component_id='scatter-plot_db1-12', component_property='figure'), Output(component_id='my-graph_db12', component_property='figure'), Input(component_id='dpdn2', component_property='value'), Input(component_id='dpdn3', component_property='value'), Input(component_id='dpdn4', component_property='value'), Input(component_id='dpdn5', component_property='value'), Input(component_id='dpdn6', component_property='value'), Input(component_id='dpdn7', component_property='value'), ) def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen, batch_chosen = df[col_chosen].unique().to_list() dff = df.filter( (pl.col(col_chosen).cast(str).is_in(batch_chosen)) #& ) # Select ordering of plots if condition1_chosen == "integrated_cell_states": cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())} else: cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())} # Calculate the mean expression # Melt wide format DataFrame into long format # Specify batch column as string type and gene columns as float type list_conds = condition3_chosen list_conds += [col_chosen] dff_pre = dff.select(list_conds) # Melt wide format DataFrame into long format dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression") # Calculate the mean expression levels for each gene in each region expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() # # Calculate the percentage total expressed dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len()) count = 1 dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len")) dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len")) dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total")) dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer") result = dff_5.select([ pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null())) .then(pl.col('len') / pl.col('total')*100) .otherwise(None).alias("%"), ]) result = result.with_columns(pl.col("%").fill_null(0)) dff_5[["percentage"]] = result[["%"]] dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage")) # Final part to join the percentage expressed and mean expression levels expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner") fig_scatter_db1_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen, labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name=None, title="S-cycle gene:",template="seaborn") fig_scatter_db1_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen, labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name='condition', title="G2M-cycle gene:",template="seaborn") fig_scatter_db1_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score", labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name='condition', title="S score:",template="seaborn") fig_scatter_db1_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score", labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name='condition', title="G2M score:",template="seaborn") # Sort values of custom in-between dff = dff.sort(condition1_chosen) fig_scatter_db1_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen, labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord) fig_scatter_db1_9.update_traces(hoverinfo='none', hovertemplate=None) fig_scatter_db1_9.update_layout(hovermode=False) fig_scatter_db1_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen, labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name='condition',template="seaborn") fig_scatter_db1_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen, #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name='condition',template="seaborn",category_orders=cat_ord) # Reorder categories on natural sorting or on the integrated cell state order of the paper if col_chosen == "integrated_cell_states": fig_scatter_db1_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression", size="percentage", size_max = 20, #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique())}) else: fig_scatter_db1_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression", size="percentage", size_max = 20, #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen}) fig_violin_db12 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all", color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord) return fig_scatter_db1_5, fig_scatter_db1_6, fig_scatter_db1_7, fig_scatter_db1_8, fig_scatter_db1_9, fig_scatter_db1_10, fig_scatter_db1_11, fig_scatter_db1_12, fig_violin_db12