Update pages/keratinocytes_scVI_integration.py
Browse files
pages/keratinocytes_scVI_integration.py
CHANGED
@@ -113,7 +113,7 @@ tab3_content = html.Div([
|
|
113 |
|
114 |
tab4_content = html.Div([
|
115 |
html.Label("Column chosen"),
|
116 |
-
dcc.Dropdown(id='dpdn2', value="
|
117 |
options=df.columns),
|
118 |
html.Div([
|
119 |
html.Label("Multi gene"),
|
@@ -164,8 +164,8 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
164 |
(pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
|
165 |
)
|
166 |
# Select ordering of plots
|
167 |
-
if condition1_chosen == "
|
168 |
-
cat_ord= {condition1_chosen: ["1","2","3","4"]}
|
169 |
else:
|
170 |
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
|
171 |
|
@@ -236,7 +236,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
236 |
hover_name='batch_renamed',template="seaborn",category_orders=cat_ord)
|
237 |
|
238 |
# Reorder categories on natural sorting or on the integrated cell state order of the paper
|
239 |
-
if col_chosen == "
|
240 |
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
241 |
size="percentage", size_max = 20,
|
242 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
|
113 |
|
114 |
tab4_content = html.Div([
|
115 |
html.Label("Column chosen"),
|
116 |
+
dcc.Dropdown(id='dpdn2', value="leiden_renamed", multi=False,
|
117 |
options=df.columns),
|
118 |
html.Div([
|
119 |
html.Label("Multi gene"),
|
|
|
164 |
(pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
|
165 |
)
|
166 |
# Select ordering of plots
|
167 |
+
if condition1_chosen == "leiden_renamed":
|
168 |
+
cat_ord= {condition1_chosen: ["1","2","3","4","5"]}
|
169 |
else:
|
170 |
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())}
|
171 |
|
|
|
236 |
hover_name='batch_renamed',template="seaborn",category_orders=cat_ord)
|
237 |
|
238 |
# Reorder categories on natural sorting or on the integrated cell state order of the paper
|
239 |
+
if col_chosen == "leiden_renamed":
|
240 |
fig_scatter_db2_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression",
|
241 |
size="percentage", size_max = 20,
|
242 |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|