Spaces:
Running
Running
Update functions.py
Browse files- functions.py +520 -0
functions.py
CHANGED
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30,lambda_mult= 0.7):
|
2 |
|
3 |
model_name = "Alibaba-NLP/gte-large-en-v1.5"
|
@@ -40,3 +46,517 @@ def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type=
|
|
40 |
|
41 |
|
42 |
return retriever
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from some_llm_library import PromptTemplate, StrOutputParser
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type='mmr', k=7, chunk_size=300, chunk_overlap=30,lambda_mult= 0.7):
|
8 |
|
9 |
model_name = "Alibaba-NLP/gte-large-en-v1.5"
|
|
|
46 |
|
47 |
|
48 |
return retriever
|
49 |
+
|
50 |
+
|
51 |
+
def retrieval_grader_grader(llm):
|
52 |
+
"""
|
53 |
+
Function to create a grader object using a passed LLM model.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
llm: The language model to be used for grading.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
Callable: A pipeline function that grades relevance based on the LLM.
|
60 |
+
"""
|
61 |
+
|
62 |
+
# Define the class for grading documents inside the function
|
63 |
+
class GradeDocuments(BaseModel):
|
64 |
+
"""Binary score for relevance check on retrieved documents."""
|
65 |
+
binary_score: str = Field(
|
66 |
+
description="Documents are relevant to the question, 'yes' or 'no'"
|
67 |
+
)
|
68 |
+
|
69 |
+
# Create the structured LLM grader using the passed LLM
|
70 |
+
structured_llm_grader = llm.with_structured_output(GradeDocuments)
|
71 |
+
|
72 |
+
# Define the prompt template
|
73 |
+
prompt = PromptTemplate(
|
74 |
+
template="""You are a teacher grading a quiz. You will be given:
|
75 |
+
1/ a QUESTION
|
76 |
+
2/ A FACT provided by the student
|
77 |
+
|
78 |
+
You are grading RELEVANCE RECALL:
|
79 |
+
A score of 1 means that ANY of the statements in the FACT are relevant to the QUESTION.
|
80 |
+
A score of 0 means that NONE of the statements in the FACT are relevant to the QUESTION.
|
81 |
+
1 is the highest (best) score. 0 is the lowest score you can give.
|
82 |
+
|
83 |
+
Explain your reasoning in a step-by-step manner. Ensure your reasoning and conclusion are correct.
|
84 |
+
|
85 |
+
Avoid simply stating the correct answer at the outset.
|
86 |
+
|
87 |
+
Question: {question} \n
|
88 |
+
Fact: \n\n {documents} \n\n
|
89 |
+
|
90 |
+
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \n
|
91 |
+
Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.
|
92 |
+
""",
|
93 |
+
input_variables=['documents', 'question'],
|
94 |
+
)
|
95 |
+
|
96 |
+
# Combine the prompt with the structured LLM grader
|
97 |
+
retrieval_grader = prompt | structured_llm_grader
|
98 |
+
|
99 |
+
# Return the grader object
|
100 |
+
return retrieval_grader
|
101 |
+
|
102 |
+
|
103 |
+
def create_toxicity_checker(llm):
|
104 |
+
"""
|
105 |
+
Function to create a toxicity checker object using a passed LLM model.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
llm: The language model to be used for toxicity checking.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
Callable: A pipeline function that checks for toxicity based on the LLM.
|
112 |
+
"""
|
113 |
+
|
114 |
+
# Define the class for toxicity check inside the function
|
115 |
+
class PromtGuard(BaseModel):
|
116 |
+
"""Binary score for toxicity check on question."""
|
117 |
+
score: str = Field(
|
118 |
+
description="Is the question toxic, 'yes' or 'no'"
|
119 |
+
)
|
120 |
+
|
121 |
+
# Create the structured LLM toxicity checker using the passed LLM
|
122 |
+
structured_llm_toxicity_checker = llm.with_structured_output(PromtGuard)
|
123 |
+
|
124 |
+
# Define the prompt template
|
125 |
+
prompt = PromptTemplate(
|
126 |
+
template="""You are a classifier that will score a text based upon supplied criteria.
|
127 |
+
|
128 |
+
Here is the criteria for scoring:
|
129 |
+
|
130 |
+
(1) insults
|
131 |
+
|
132 |
+
(2) threats
|
133 |
+
|
134 |
+
(3) highly negative comments
|
135 |
+
|
136 |
+
(4) any Personally Identifiable Information such as API Keys
|
137 |
+
|
138 |
+
Score:
|
139 |
+
|
140 |
+
A score of yes means that the text meets ANY of the criteria.
|
141 |
+
|
142 |
+
A score of no means that the text does not meet ALL of the criteria.
|
143 |
+
|
144 |
+
Here is the question: {question}
|
145 |
+
|
146 |
+
Give a binary score 'yes' or 'no' to indicate whether the answer is useful to resolve a question.
|
147 |
+
If the answer contains repeated phrases, repetition, then return 'no'\n
|
148 |
+
Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.""",
|
149 |
+
input_variables=["question"],
|
150 |
+
)
|
151 |
+
|
152 |
+
# Combine the prompt with the structured LLM toxicity checker
|
153 |
+
toxicity_grader = prompt | structured_llm_toxicity_checker
|
154 |
+
|
155 |
+
# Return the toxicity checker object
|
156 |
+
return toxicity_grader
|
157 |
+
|
158 |
+
|
159 |
+
def grade_question_toxicity(state):
|
160 |
+
"""
|
161 |
+
Grades the question for toxicity.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
state (dict): The current graph state.
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
str: 'good' if the question passes the toxicity check, 'bad' otherwise.
|
168 |
+
"""
|
169 |
+
steps = state["steps"]
|
170 |
+
steps.append("promt guard")
|
171 |
+
score = toxicity_grader.invoke({"question": state["question"]})
|
172 |
+
grade = getattr(score, 'score', None)
|
173 |
+
|
174 |
+
if grade == "yes":
|
175 |
+
return "bad"
|
176 |
+
else:
|
177 |
+
return "good"
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
def create_helpfulness_checker(llm):
|
182 |
+
"""
|
183 |
+
Function to create a helpfulness checker object using a passed LLM model.
|
184 |
+
|
185 |
+
Args:
|
186 |
+
llm: The language model to be used for checking the helpfulness of answers.
|
187 |
+
|
188 |
+
Returns:
|
189 |
+
Callable: A pipeline function that checks if the student's answer is helpful.
|
190 |
+
"""
|
191 |
+
|
192 |
+
# Define the class for helpfulness grading inside the function
|
193 |
+
class GradeHelpfulness(BaseModel):
|
194 |
+
"""Binary score for Helpfulness check on answer."""
|
195 |
+
score: str = Field(
|
196 |
+
description="Is the answer helpfulness, 'yes' or 'no'"
|
197 |
+
)
|
198 |
+
|
199 |
+
# Create the structured LLM helpfulness checker using the passed LLM
|
200 |
+
structured_llm_helpfulness_checker = llm.with_structured_output(GradeHelpfulness)
|
201 |
+
|
202 |
+
# Define the prompt template
|
203 |
+
prompt = PromptTemplate(
|
204 |
+
template="""You will be given a QUESTION and a STUDENT ANSWER.
|
205 |
+
|
206 |
+
Here is the grade criteria to follow:
|
207 |
+
|
208 |
+
(1) Ensure the STUDENT ANSWER is concise and relevant to the QUESTION
|
209 |
+
|
210 |
+
(2) Ensure the STUDENT ANSWER helps to answer the QUESTION
|
211 |
+
|
212 |
+
Score:
|
213 |
+
|
214 |
+
A score of yes means that the student's answer meets all of the criteria. This is the highest (best) score.
|
215 |
+
|
216 |
+
A score of no means that the student's answer does not meet all of the criteria. This is the lowest possible score you can give.
|
217 |
+
|
218 |
+
Explain your reasoning in a step-by-step manner to ensure your reasoning and conclusion are correct.
|
219 |
+
|
220 |
+
Avoid simply stating the correct answer at the outset.
|
221 |
+
|
222 |
+
If the answer contains repeated phrases, repetition, then return 'no'\n
|
223 |
+
Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.""",
|
224 |
+
input_variables=["generation", "question"],
|
225 |
+
)
|
226 |
+
|
227 |
+
# Combine the prompt with the structured LLM helpfulness checker
|
228 |
+
helpfulness_grader = prompt | structured_llm_helpfulness_checker
|
229 |
+
|
230 |
+
# Return the helpfulness checker object
|
231 |
+
return helpfulness_grader
|
232 |
+
|
233 |
+
|
234 |
+
def grade_document_relevance(question: str, document: str):
|
235 |
+
input_data = {"documents": documents,"question": question, }
|
236 |
+
try:
|
237 |
+
result = retrieval_grader.invoke(input_data)
|
238 |
+
return result
|
239 |
+
except Exception as e:
|
240 |
+
print(f"Error parsing result: {e}")
|
241 |
+
return {"score": "no"} # Default to "no" if there is an error
|
242 |
+
|
243 |
+
# Example usage
|
244 |
+
question = "What are the types of agent memory?"
|
245 |
+
documents = "Agents can have various types of memory, such as short-term memory and long-term memory."
|
246 |
+
grade = grade_document_relevance(documents,question )
|
247 |
+
print(grade) # Expected output: {'value': 'yes'}
|
248 |
+
|
249 |
+
|
250 |
+
def create_hallucination_checker(llm):
|
251 |
+
"""
|
252 |
+
Function to create a hallucination checker object using a passed LLM model.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
llm: The language model to be used for checking hallucinations in the student's answer.
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
Callable: A pipeline function that checks if the student's answer contains hallucinations.
|
259 |
+
"""
|
260 |
+
|
261 |
+
# Define the class for hallucination grading inside the function
|
262 |
+
class GradeHaliucinations(BaseModel):
|
263 |
+
"""Binary score for hallucinations check on answer."""
|
264 |
+
score: str = Field(
|
265 |
+
description="Answer contains hallucinations, 'yes' or 'no'"
|
266 |
+
)
|
267 |
+
|
268 |
+
# Create the structured LLM hallucination checker using the passed LLM
|
269 |
+
structured_llm_haliucinations_checker = llm.with_structured_output(GradeHaliucinations)
|
270 |
+
|
271 |
+
# Define the prompt template
|
272 |
+
prompt = PromptTemplate(
|
273 |
+
template="""You are a teacher grading a quiz.
|
274 |
+
|
275 |
+
You will be given FACTS and a STUDENT ANSWER.
|
276 |
+
|
277 |
+
You are grading STUDENT ANSWER of source FACTS. Focus on correctness of the STUDENT ANSWER and detection of any hallucinations.
|
278 |
+
|
279 |
+
Ensure that the STUDENT ANSWER meets the following criteria:
|
280 |
+
|
281 |
+
(1) it does not contain information outside of the FACTS
|
282 |
+
|
283 |
+
(2) the STUDENT ANSWER should be fully grounded in and based upon information in the source documents
|
284 |
+
|
285 |
+
Score:
|
286 |
+
|
287 |
+
A score of yes means that the student's answer meets all of the criteria. This is the highest (best) score.
|
288 |
+
|
289 |
+
A score of no means that the student's answer does not meet all of the criteria. This is the lowest possible score you can give.
|
290 |
+
|
291 |
+
Explain your reasoning in a step-by-step manner to ensure your reasoning and conclusion are correct.
|
292 |
+
|
293 |
+
Avoid simply stating the correct answer at the outset.
|
294 |
+
STUDENT ANSWER: {generation} \n
|
295 |
+
Fact: \n\n {documents} \n\n
|
296 |
+
|
297 |
+
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question. \n
|
298 |
+
Provide the binary score as a JSON with a single key 'score' and no preamble or explanation.
|
299 |
+
""",
|
300 |
+
input_variables=["generation", "documents"],
|
301 |
+
)
|
302 |
+
|
303 |
+
# Combine the prompt with the structured LLM hallucination checker
|
304 |
+
hallucination_grader = prompt | structured_llm_haliucinations_checker
|
305 |
+
|
306 |
+
# Return the hallucination checker object
|
307 |
+
return hallucination_grader
|
308 |
+
|
309 |
+
|
310 |
+
def create_question_rewriter(llm):
|
311 |
+
"""
|
312 |
+
Function to create a question rewriter object using a passed LLM model.
|
313 |
+
|
314 |
+
Args:
|
315 |
+
llm: The language model to be used for rewriting questions.
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
Callable: A pipeline function that rewrites questions for optimized vector store retrieval.
|
319 |
+
"""
|
320 |
+
|
321 |
+
# Define the prompt template for question rewriting
|
322 |
+
re_write_prompt = PromptTemplate(
|
323 |
+
template="""You are a question re-writer that converts an input question to a better version that is optimized for vector store retrieval.\n
|
324 |
+
Your task is to enhance the question by clarifying the intent, removing any ambiguity, and including specific details to retrieve the most relevant information.\n
|
325 |
+
I don't need explanations, only the enhanced question.
|
326 |
+
Here is the initial question: \n\n {question}. Improved question with no preamble: \n """,
|
327 |
+
input_variables=["question"],
|
328 |
+
)
|
329 |
+
|
330 |
+
# Combine the prompt with the LLM and output parser
|
331 |
+
question_rewriter = re_write_prompt | llm | StrOutputParser()
|
332 |
+
|
333 |
+
# Return the question rewriter object
|
334 |
+
return question_rewriter
|
335 |
+
|
336 |
+
|
337 |
+
def transform_query(state):
|
338 |
+
"""
|
339 |
+
Transform the query to produce a better question.
|
340 |
+
|
341 |
+
Args:
|
342 |
+
state (dict): The current graph state
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
state (dict): Updates question key with a re-phrased question
|
346 |
+
"""
|
347 |
+
|
348 |
+
print("---TRANSFORM QUERY---")
|
349 |
+
question = state["question"]
|
350 |
+
documents = state["documents"]
|
351 |
+
steps = state["steps"]
|
352 |
+
steps.append("question_transformation")
|
353 |
+
|
354 |
+
# Re-write question
|
355 |
+
better_question = question_rewriter.invoke({"question": question})
|
356 |
+
print(f" Transformed question: {better_question}")
|
357 |
+
return {"documents": documents, "question": better_question}
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
def format_google_results(google_results):
|
363 |
+
formatted_documents = []
|
364 |
+
|
365 |
+
# Loop through each organic result and create a Document for it
|
366 |
+
for result in google_results['organic']:
|
367 |
+
title = result.get('title', 'No title')
|
368 |
+
link = result.get('link', 'No link')
|
369 |
+
snippet = result.get('snippet', 'No summary available')
|
370 |
+
|
371 |
+
# Create a Document object with similar metadata structure to WikipediaRetriever
|
372 |
+
document = Document(
|
373 |
+
metadata={
|
374 |
+
'title': title,
|
375 |
+
'summary': snippet,
|
376 |
+
'source': link
|
377 |
+
},
|
378 |
+
page_content=snippet # Using the snippet as the page content
|
379 |
+
)
|
380 |
+
|
381 |
+
formatted_documents.append(document)
|
382 |
+
|
383 |
+
return formatted_documents
|
384 |
+
|
385 |
+
|
386 |
+
def grade_generation_v_documents_and_question(state):
|
387 |
+
"""
|
388 |
+
Determines whether the generation is grounded in the document and answers the question.
|
389 |
+
"""
|
390 |
+
print("---CHECK HALLUCINATIONS---")
|
391 |
+
question = state["question"]
|
392 |
+
documents = state["documents"]
|
393 |
+
generation = state["generation"]
|
394 |
+
generation_count = state.get("generation_count") # Use state.get to avoid KeyError
|
395 |
+
print(f" generation number: {generation_count}")
|
396 |
+
|
397 |
+
# Grading hallucinations
|
398 |
+
score = hallucination_grader.invoke(
|
399 |
+
{"documents": documents, "generation": generation}
|
400 |
+
)
|
401 |
+
grade = getattr(score, 'score', None)
|
402 |
+
|
403 |
+
# Check hallucination
|
404 |
+
if grade == "yes":
|
405 |
+
print("---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---")
|
406 |
+
# Check question-answering
|
407 |
+
print("---GRADE GENERATION vs QUESTION---")
|
408 |
+
score = answer_grader.invoke({"question": question, "generation": generation})
|
409 |
+
grade = getattr(score, 'score', None)
|
410 |
+
if grade == "yes":
|
411 |
+
print("---DECISION: GENERATION ADDRESSES QUESTION---")
|
412 |
+
return "useful"
|
413 |
+
else:
|
414 |
+
print("---DECISION: GENERATION DOES NOT ADDRESS QUESTION---")
|
415 |
+
return "not useful"
|
416 |
+
else:
|
417 |
+
if generation_count > 1:
|
418 |
+
print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, TRANSFORM QUERY---")
|
419 |
+
# Reset count if it exceeds limit
|
420 |
+
return "not useful"
|
421 |
+
else:
|
422 |
+
print("---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---")
|
423 |
+
# Increment correctly here
|
424 |
+
print(f" generation number after increment: {state['generation_count']}")
|
425 |
+
return "not supported"
|
426 |
+
|
427 |
+
|
428 |
+
def ask_question(state):
|
429 |
+
"""
|
430 |
+
Initialize question
|
431 |
+
|
432 |
+
Args:
|
433 |
+
state (dict): The current graph state
|
434 |
+
|
435 |
+
Returns:
|
436 |
+
state (dict): Question
|
437 |
+
"""
|
438 |
+
steps = state["steps"]
|
439 |
+
question = state["question"]
|
440 |
+
generations_count = state.get("generations_count", 0)
|
441 |
+
documents = retriever.invoke(question)
|
442 |
+
|
443 |
+
steps.append("question_asked")
|
444 |
+
return {"question": question, "steps": steps,"generation_count": generations_count}
|
445 |
+
|
446 |
+
|
447 |
+
def retrieve(state):
|
448 |
+
"""
|
449 |
+
Retrieve documents
|
450 |
+
|
451 |
+
Args:
|
452 |
+
state (dict): The current graph state
|
453 |
+
|
454 |
+
Returns:
|
455 |
+
state (dict): New key added to state, documents, that contains retrieved documents
|
456 |
+
"""
|
457 |
+
steps = state["steps"]
|
458 |
+
question = state["question"]
|
459 |
+
|
460 |
+
documents = retriever.invoke(question)
|
461 |
+
|
462 |
+
steps.append("retrieve_documents")
|
463 |
+
return {"documents": documents, "question": question, "steps": steps}
|
464 |
+
|
465 |
+
|
466 |
+
def generate(state):
|
467 |
+
"""
|
468 |
+
Generate answer
|
469 |
+
"""
|
470 |
+
question = state["question"]
|
471 |
+
documents = state["documents"]
|
472 |
+
generation = rag_chain.invoke({"documents": documents, "question": question})
|
473 |
+
steps = state["steps"]
|
474 |
+
steps.append("generate_answer")
|
475 |
+
generation_count = state["generation_count"]
|
476 |
+
|
477 |
+
generation_count += 1
|
478 |
+
|
479 |
+
return {
|
480 |
+
"documents": documents,
|
481 |
+
"question": question,
|
482 |
+
"generation": generation,
|
483 |
+
"steps": steps,
|
484 |
+
"generation_count": generation_count # Include generation_count in return
|
485 |
+
}
|
486 |
+
|
487 |
+
|
488 |
+
def grade_documents(state):
|
489 |
+
question = state["question"]
|
490 |
+
documents = state["documents"]
|
491 |
+
steps = state["steps"]
|
492 |
+
steps.append("grade_document_retrieval")
|
493 |
+
|
494 |
+
filtered_docs = []
|
495 |
+
web_results_list = []
|
496 |
+
search = "No"
|
497 |
+
|
498 |
+
for d in documents:
|
499 |
+
# Call the grading function
|
500 |
+
score = retrieval_grader.invoke({"question": question, "documents": d.page_content})
|
501 |
+
print(f"Grader output for document: {score}") # Detailed debugging output
|
502 |
+
|
503 |
+
# Extract the grade
|
504 |
+
grade = getattr(score, 'binary_score', None)
|
505 |
+
if grade and grade.lower() in ["yes", "true", "1"]:
|
506 |
+
filtered_docs.append(d)
|
507 |
+
elif len(filtered_docs) < 4:
|
508 |
+
search = "Yes"
|
509 |
+
|
510 |
+
# Check the decision-making process
|
511 |
+
print(f"Final decision - Perform web search: {search}")
|
512 |
+
print(f"Filtered documents count: {len(filtered_docs)}")
|
513 |
+
|
514 |
+
return {
|
515 |
+
"documents": filtered_docs,
|
516 |
+
"question": question,
|
517 |
+
"search": search,
|
518 |
+
"steps": steps,
|
519 |
+
}
|
520 |
+
|
521 |
+
def web_search(state):
|
522 |
+
question = state["question"]
|
523 |
+
documents = state.get("documents")
|
524 |
+
steps = state["steps"]
|
525 |
+
steps.append("web_search")
|
526 |
+
k = 4 - len(documents)
|
527 |
+
good_wiki_splits = []
|
528 |
+
good_exa_splits = []
|
529 |
+
web_results_list = []
|
530 |
+
|
531 |
+
wiki_results = WikipediaRetriever( lang = 'en',top_k_results = 1,doc_content_chars_max = 1000).invoke(question)
|
532 |
+
|
533 |
+
|
534 |
+
if k<1:
|
535 |
+
combined_documents = documents + wiki_results
|
536 |
+
else:
|
537 |
+
web_results = GoogleSerperAPIWrapper(k = k).results(question)
|
538 |
+
formatted_documents = format_google_results(web_results)
|
539 |
+
for doc in formatted_documents:
|
540 |
+
web_results_list.append(doc)
|
541 |
+
|
542 |
+
|
543 |
+
combined_documents = documents + wiki_results + web_results_list
|
544 |
+
|
545 |
+
return {"documents": combined_documents, "question": question, "steps": steps}
|
546 |
+
|
547 |
+
def decide_to_generate(state):
|
548 |
+
"""
|
549 |
+
Determines whether to generate an answer, or re-generate a question.
|
550 |
+
|
551 |
+
Args:
|
552 |
+
state (dict): The current graph state
|
553 |
+
|
554 |
+
Returns:
|
555 |
+
str: Binary decision for next node to call
|
556 |
+
"""
|
557 |
+
search = state["search"]
|
558 |
+
if search == "Yes":
|
559 |
+
return "search"
|
560 |
+
else:
|
561 |
+
return "generate"
|
562 |
+
|