Update app.py
Browse files
app.py
CHANGED
@@ -73,7 +73,7 @@ def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type=
|
|
73 |
)
|
74 |
st.write("VectorStore is created")
|
75 |
|
76 |
-
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
|
77 |
|
78 |
|
79 |
|
@@ -152,7 +152,7 @@ def create_conversational_rag_chain(retriever):
|
|
152 |
llm = llamacpp.LlamaCpp(
|
153 |
model_path = "qwen2-0_5b-instruct-q8_0.gguf",
|
154 |
n_gpu_layers=0,
|
155 |
-
temperature=0.
|
156 |
top_p=0.9,
|
157 |
n_ctx=22000,
|
158 |
n_batch=2000,
|
@@ -163,9 +163,19 @@ def create_conversational_rag_chain(retriever):
|
|
163 |
verbose=False,
|
164 |
)
|
165 |
|
166 |
-
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
|
171 |
return rag_chain
|
|
|
73 |
)
|
74 |
st.write("VectorStore is created")
|
75 |
|
76 |
+
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k, 'lambda_mult': 0.7})
|
77 |
|
78 |
|
79 |
|
|
|
152 |
llm = llamacpp.LlamaCpp(
|
153 |
model_path = "qwen2-0_5b-instruct-q8_0.gguf",
|
154 |
n_gpu_layers=0,
|
155 |
+
temperature=0.0,
|
156 |
top_p=0.9,
|
157 |
n_ctx=22000,
|
158 |
n_batch=2000,
|
|
|
163 |
verbose=False,
|
164 |
)
|
165 |
|
166 |
+
qa_system_prompt = """ Use the following pieces of retrieved context to answer the question{question} . \
|
167 |
+
Be informative but dont make to long answers, be polite and formal.\
|
168 |
+
Make answer in Enlish Language.\
|
169 |
+
Make answer based on context .\
|
170 |
+
If you don't know the answer, say " Please provide more details about your question ." \
|
171 |
|
172 |
+
|
173 |
+
{context}"""
|
174 |
+
|
175 |
+
|
176 |
+
answer_prompt = ChatPromptTemplate.from_template(qa_system_prompt)
|
177 |
+
|
178 |
+
rag_chain = answer_prompt | llm | StrOutputParser()
|
179 |
|
180 |
|
181 |
return rag_chain
|