Upload 13 files
Browse files- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/README.md +11 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/Stroke_Prediction..ipynb +0 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/analysis_functions.py +1003 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/app.py +110 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/categorical_features.joblib +3 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/encoder.joblib +3 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/features.joblib +3 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/lgb1_model.joblib +3 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/lgb1_model.pkl +3 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/lgbm_model_shap_evaluation.png +0 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/lgbm_tree.png +0 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/mlapi.py +65 -0
- Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/requirements.txt +0 -0
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/README.md
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# argryge-ML.2
|
2 |
+
In this project was made:
|
3 |
+
Data analysis, modeling , model evaluation, model saving and put in to the app , where user could use it.
|
4 |
+
Also made Api endpoint for geting prediction
|
5 |
+
|
6 |
+
Content of the project:
|
7 |
+
Jupyter notebook of stroke data analysis and modeling : Stroke_prediction.ipynb
|
8 |
+
App for using a model with streamlit : app.py
|
9 |
+
Api created using FastApi : mlapi
|
10 |
+
Saved model in to pickle
|
11 |
+
Joblib model artifacts
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/Stroke_Prediction..ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/analysis_functions.py
ADDED
@@ -0,0 +1,1003 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import Counter
|
2 |
+
from functools import reduce
|
3 |
+
from typing import List, Tuple, Union
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
import seaborn as sns
|
8 |
+
from scipy.stats import t, wilcoxon
|
9 |
+
from scipy.stats import ttest_1samp
|
10 |
+
import scipy.stats as stats
|
11 |
+
from xml.etree.ElementTree import fromstring, ElementTree
|
12 |
+
from sklearn.linear_model import LogisticRegression
|
13 |
+
from sklearn.metrics import accuracy_score,precision_score
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
def read_clean_csv_data(fileName : str ,index_col : Union[int, str] =0) -> pd.DataFrame :
|
18 |
+
"""Function to load data set from a .csv file.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
fileName (str, optional): The name of the .csv file.
|
22 |
+
index_col (Union[int, str], optional): The index column of the resulting dataframe. Defaults to 0.
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
pd.DataFrame: The cleaned and preprocessed dataframe.
|
26 |
+
"""
|
27 |
+
|
28 |
+
## Read the .csv file with the pandas read_csv method
|
29 |
+
df = pd.read_csv( fileName ,index_col= index_col)
|
30 |
+
|
31 |
+
## Remove rows with missing values, accounting for mising values coded as '?'
|
32 |
+
cols= df.columns
|
33 |
+
for column in cols:
|
34 |
+
df.loc[df[column] == '?', column] = np.nan
|
35 |
+
df.dropna(axis = 0, inplace = True)
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
return df
|
40 |
+
|
41 |
+
def convert_k_m_to_numeric(value):
|
42 |
+
if 'k' in value:
|
43 |
+
return float(value.replace('k', '')) * 1000
|
44 |
+
elif 'm' in value:
|
45 |
+
return float(value.replace('m', '')) * 1000000
|
46 |
+
else:
|
47 |
+
return float(value)
|
48 |
+
|
49 |
+
def quartiles_counts(df_parts: list, column_name: str, value_name: str) -> pd.Series:
|
50 |
+
"""
|
51 |
+
Computes the count of rows in each quartile and with a specified value in a specified column.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
df_parts (list of pandas.DataFrame): A list of dataframes to compute counts for.
|
55 |
+
column_name (str): The name of the column to check for the specified value.
|
56 |
+
value_name (str): The value to check for in the specified column.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
pandas.Series: A series of counts for each quartile, with quartile names as indices.
|
60 |
+
"""
|
61 |
+
counts_series = pd.Series({}, dtype=int)
|
62 |
+
for i, df_part in enumerate(df_parts):
|
63 |
+
x = (df_part[column_name] == value_name).sum()
|
64 |
+
counts_series[f"Quartile {i+1}"] = x
|
65 |
+
return counts_series
|
66 |
+
def six_parts_counts(df_parts: list, column_name: str, value_name: str) -> pd.Series:
|
67 |
+
"""
|
68 |
+
If lenght of data lit <3 Computes the count of rows in each quartile if 2< lenght <5 count in each quartil if lenght > 4 ads top and bottom with quartiles
|
69 |
+
with a specified value in a specified column.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
df_parts (list of pandas.DataFrame): A list of dataframes to compute counts for.
|
73 |
+
column_name (str): The name of the column to check for the specified value.
|
74 |
+
value_name (str): The value to check for in the specified column.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
pandas.Series: A series of counts for each quartile and top bottom dataframes, with parts names as indices.
|
78 |
+
"""
|
79 |
+
counts_series = pd.Series({}, dtype=int)
|
80 |
+
if len(df_parts)>2:
|
81 |
+
for i, df_part in enumerate(df_parts):
|
82 |
+
x = (df_part[column_name] == value_name).sum()
|
83 |
+
if x>0 :
|
84 |
+
if i == 4:
|
85 |
+
counts_series["Top20"] = x
|
86 |
+
elif i == 5:
|
87 |
+
counts_series["Bottom21"] = x
|
88 |
+
else:
|
89 |
+
counts_series[f"Quartile {i+1}"] = x
|
90 |
+
|
91 |
+
if len(df_parts) < 3:
|
92 |
+
for i, df_part in enumerate(df_parts):
|
93 |
+
x = (df_part[column_name] == value_name).sum()
|
94 |
+
if x>0 :
|
95 |
+
if i == 0:
|
96 |
+
counts_series["Above mean"] = x
|
97 |
+
elif i == 1:
|
98 |
+
counts_series["Below mean"] = x
|
99 |
+
|
100 |
+
return counts_series
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def labeledBarChart(counts: pd.Series, xlabel: str = 'Name', ylabel: str = 'Count',
|
107 |
+
title: str = "Title", figsize: Tuple[float, float] = (10,10), rotation: int = 0) -> None:
|
108 |
+
"""Creates a labeled bar chart from a pandas Series.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
counts (pd.Series): The pandas series with the data to be plotted.
|
112 |
+
xlabel (str, optional): The x-axis label. Defaults to 'Name'.
|
113 |
+
ylabel (str, optional): The y-axis label. Defaults to 'Count'.
|
114 |
+
title (str, optional): The title of the plot. Defaults to "Title".
|
115 |
+
figsize (Tuple[float, float], optional): The size of the figure. Defaults to (10,10).
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
None: Displays the labeled bar chart.
|
119 |
+
"""
|
120 |
+
|
121 |
+
fig = plt.figure(figsize = figsize)
|
122 |
+
ax = fig.gca()
|
123 |
+
plt.xticks(rotation = rotation)
|
124 |
+
counts_bars = ax.bar(counts.index, counts.values)
|
125 |
+
# Add count labels to the bars
|
126 |
+
for i, count in enumerate(counts.values):
|
127 |
+
ax.text(i, count+2, str(count), ha='center', va='bottom')
|
128 |
+
# Add x-axis and y-axis labels
|
129 |
+
ax.set_xlabel(xlabel)
|
130 |
+
ax.set_ylabel(ylabel)
|
131 |
+
ax.set_title(title)
|
132 |
+
|
133 |
+
# Show the plot
|
134 |
+
plt.show()
|
135 |
+
|
136 |
+
|
137 |
+
def t_test_confidence_intervals(data: np.ndarray,column:str,con_lvl: float=0.95):
|
138 |
+
data = data[column].values
|
139 |
+
# Calculate the sample mean and standard deviation
|
140 |
+
sample_mean = np.mean(data)
|
141 |
+
sample_std = np.std(data)
|
142 |
+
|
143 |
+
# Calculate the sample size
|
144 |
+
sample_size = len(data)
|
145 |
+
# Calculate the critical value (two-tailed t-test)
|
146 |
+
critical_value = stats.t.ppf((1 + con_lvl) / 2, df=sample_size - 1)
|
147 |
+
|
148 |
+
# Calculate the standard error
|
149 |
+
standard_error = sample_std / np.sqrt(sample_size)
|
150 |
+
|
151 |
+
# Calculate the margin of error
|
152 |
+
margin_of_error = critical_value * standard_error
|
153 |
+
|
154 |
+
# Calculate the confidence interval
|
155 |
+
lower_bound = sample_mean - margin_of_error
|
156 |
+
upper_bound = sample_mean + margin_of_error
|
157 |
+
|
158 |
+
# Print the results
|
159 |
+
print("Confidence Interval ({}%): [{:.3f}, {:.3f}]".format(con_lvl * 100, lower_bound, upper_bound))
|
160 |
+
|
161 |
+
def test_of_pop_proportion_bigger(data: np.ndarray,column:str, variable : float):
|
162 |
+
# Count the total number of reviews
|
163 |
+
data_lenght = len(data[column])
|
164 |
+
|
165 |
+
# Count the number of reviews with ratings higher than 4.0
|
166 |
+
higher_ratings_reviews = len(data[data[column] > variable])
|
167 |
+
|
168 |
+
# Calculate the point estimate for the population proportion
|
169 |
+
point_estimate = higher_ratings_reviews / data_lenght
|
170 |
+
|
171 |
+
# Calculate the standard error
|
172 |
+
standard_error = np.sqrt((point_estimate * (1 - point_estimate)) / data_lenght)
|
173 |
+
|
174 |
+
# Calculate the margin of error for a 95% confidence level (Z-score of 1.96)
|
175 |
+
margin_of_error = 1.96 * standard_error
|
176 |
+
|
177 |
+
# Calculate the confidence interval
|
178 |
+
lower_bound = point_estimate - margin_of_error
|
179 |
+
upper_bound = point_estimate + margin_of_error
|
180 |
+
|
181 |
+
# Print the results
|
182 |
+
print("margin of error:", margin_of_error)
|
183 |
+
print("Point Estimate:", point_estimate)
|
184 |
+
print("95% Confidence Interval: [{:.4f}, {:.4f}]".format(lower_bound, upper_bound))
|
185 |
+
def pieChart(count: pd.Series, title: str = 'Title' , figsize: Tuple[float, float] = (8,8)) -> None:
|
186 |
+
"""Creates a pie chart from a pandas Series.
|
187 |
+
|
188 |
+
Args:
|
189 |
+
count (pd.Series): The pandas series with the data to be plotted.
|
190 |
+
title (str, optional): The title of the plot. Defaults to 'Title'.
|
191 |
+
figsize (Tuple[float, float], optional): The size of the figure.
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
None: Displays the pie chart.
|
195 |
+
"""
|
196 |
+
fig = plt.figure(figsize = figsize)
|
197 |
+
ax = fig.gca()
|
198 |
+
ax.pie(count.values, labels = count.index, autopct='%1.1f%%')
|
199 |
+
|
200 |
+
# Add title
|
201 |
+
ax.set_title(title)
|
202 |
+
|
203 |
+
# Show the plot
|
204 |
+
plt.show()
|
205 |
+
|
206 |
+
|
207 |
+
def confidence_intervals(data: np.ndarray,conf_lvl = 0.95):
|
208 |
+
data = data.values
|
209 |
+
mean = data.mean()
|
210 |
+
std = data.std()
|
211 |
+
n = len(data)
|
212 |
+
conf_int = t.interval(
|
213 |
+
0.95, df=n - 1, loc=mean, scale=std / np.sqrt(n))
|
214 |
+
return conf_int
|
215 |
+
|
216 |
+
def conf_int_pop_mean(data: np.ndarray):
|
217 |
+
# Calculate sample statistics
|
218 |
+
sample_mean = np.mean(data)
|
219 |
+
sample_std = np.std(data, ddof=1) # ddof=1 for sample standard deviation
|
220 |
+
sample_size = len(data)
|
221 |
+
|
222 |
+
# Set the desired confidence level
|
223 |
+
confidence_level = 0.95
|
224 |
+
|
225 |
+
# Calculate the critical value (t-distribution)
|
226 |
+
critical_value = stats.t.ppf((1 + confidence_level) / 2, df=sample_size - 1)
|
227 |
+
|
228 |
+
# Calculate the standard error
|
229 |
+
standard_error = sample_std / np.sqrt(sample_size)
|
230 |
+
|
231 |
+
# Calculate the margin of error
|
232 |
+
margin_of_error = critical_value * standard_error
|
233 |
+
|
234 |
+
# Calculate the confidence interval
|
235 |
+
confidence_interval = (sample_mean - margin_of_error, sample_mean + margin_of_error)
|
236 |
+
|
237 |
+
# Print the results
|
238 |
+
print("Sample Mean:", sample_mean)
|
239 |
+
print("Sample Standard Deviation:", sample_std)
|
240 |
+
print("Sample Size:", sample_size)
|
241 |
+
print("Confidence Interval:", confidence_interval)
|
242 |
+
|
243 |
+
|
244 |
+
|
245 |
+
def samp1_ttest(data, null=0.0, alpha=0.05):
|
246 |
+
"""
|
247 |
+
Perform a one-sample t-test on the data.
|
248 |
+
|
249 |
+
Parameters:
|
250 |
+
- data (array-like): The data array on which to perform the t-test.
|
251 |
+
- null (float): The null hypothesis value to test against (default: 0.0).
|
252 |
+
- alpha (float): The significance level for calculating the critical value (default: 0.05).
|
253 |
+
|
254 |
+
Returns:
|
255 |
+
- t_statistic (float): The calculated t-statistic.
|
256 |
+
- p_value (float): The calculated p-value.
|
257 |
+
"""
|
258 |
+
t_statistic, p_value = stats.ttest_1samp(data, null)
|
259 |
+
|
260 |
+
# Calculate the critical value at the given significance level
|
261 |
+
critical_value = stats.t.ppf(1 - alpha, len(data) - 1)
|
262 |
+
|
263 |
+
# Compare the t-statistic with the critical value
|
264 |
+
if t_statistic > critical_value:
|
265 |
+
hypothesis_result = "Reject the null hypothesis"
|
266 |
+
else:
|
267 |
+
hypothesis_result = "Fail to reject the null hypothesis"
|
268 |
+
|
269 |
+
# Print the results
|
270 |
+
print("t-statistic:", t_statistic)
|
271 |
+
print("p-value:", p_value)
|
272 |
+
|
273 |
+
# Print the results
|
274 |
+
print(f"One-sample t-test - Statistical Significance (p-value): {p_value:.4f}")
|
275 |
+
|
276 |
+
def wilcoxon_significance_and_intervals(data: np.ndarray) -> tuple:
|
277 |
+
"""
|
278 |
+
Perform Wilcoxon signed-rank test and calculate confidence intervals.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
data (np.ndarray): Array of paired/matched samples.
|
282 |
+
|
283 |
+
Returns:
|
284 |
+
tuple: Statistical significance (p-value) and confidence intervals.
|
285 |
+
|
286 |
+
"""
|
287 |
+
|
288 |
+
# Perform the Wilcoxon signed-rank test
|
289 |
+
statistic, p_value = wilcoxon(data)
|
290 |
+
|
291 |
+
# Set the desired confidence level
|
292 |
+
confidence_level = 0.95
|
293 |
+
|
294 |
+
# Calculate the confidence intervals
|
295 |
+
n = len(data)
|
296 |
+
z_critical = 1.96 # For a 95% confidence level (two-tailed test)
|
297 |
+
|
298 |
+
mean = np.mean(data)
|
299 |
+
std_dev = np.std(data)
|
300 |
+
|
301 |
+
margin_of_error = z_critical * (std_dev / np.sqrt(n))
|
302 |
+
|
303 |
+
lower_bound = mean - margin_of_error
|
304 |
+
upper_bound = mean + margin_of_error
|
305 |
+
print(f"Statistical Significance (p-value): {p_value:.4f}")
|
306 |
+
print(f"Confidence Interval: [{lower_bound:.2f}, {upper_bound:.2f}]")
|
307 |
+
# Return the statistical significance and confidence intervals
|
308 |
+
return p_value, (lower_bound, upper_bound)
|
309 |
+
# Print the statistical significance and confidence intervals
|
310 |
+
print(f"Statistical Significance (p-value): {p_value:.4f}")
|
311 |
+
print(f"Confidence Interval: [{lower_bound:.2f}, {upper_bound:.2f}]")
|
312 |
+
def population_mean(data: np.ndarray) :
|
313 |
+
data = np.array(data)
|
314 |
+
# Calculate the population mean
|
315 |
+
population_mean = data.mean()
|
316 |
+
|
317 |
+
# Calculate the confidence interval
|
318 |
+
confidence_level = 0.95
|
319 |
+
alpha = 1 - confidence_level
|
320 |
+
|
321 |
+
z_critical = stats.norm.ppf(1 - alpha / 2) # Z-value for 95% confidence interval
|
322 |
+
|
323 |
+
standard_error = data.std() / np.sqrt(len(data))
|
324 |
+
margin_of_error = z_critical * standard_error
|
325 |
+
|
326 |
+
lower_bound = population_mean - margin_of_error
|
327 |
+
upper_bound = population_mean + margin_of_error
|
328 |
+
|
329 |
+
# Print the results
|
330 |
+
print("Population Mean:", population_mean)
|
331 |
+
print("Confidence Interval:", (lower_bound, upper_bound))
|
332 |
+
|
333 |
+
|
334 |
+
def varible_mean_Zhypothesis(data: np.ndarray,alpha = 0.05,null_mean = 4.62):
|
335 |
+
data = np.array(data)
|
336 |
+
|
337 |
+
# Calculate sample statistics
|
338 |
+
sample_mean = np.mean(data)
|
339 |
+
sample_std = np.std(data, ddof=1) # ddof=1 for sample standard deviation
|
340 |
+
sample_size = len(data)
|
341 |
+
|
342 |
+
# Calculate the test statistic (z-score)
|
343 |
+
z_score = (sample_mean - null_mean) / (sample_std / np.sqrt(sample_size))
|
344 |
+
|
345 |
+
# Calculate the critical value (z-value) for two-tailed test
|
346 |
+
critical_value = stats.norm.ppf(1 - alpha / 2)
|
347 |
+
|
348 |
+
# Calculate the p-value
|
349 |
+
p_value = 2 * (1 - stats.norm.cdf(abs(z_score)))
|
350 |
+
|
351 |
+
# Compare the test statistic with critical value and p-value with alpha
|
352 |
+
if abs(z_score) > critical_value:
|
353 |
+
print("Reject the null hypothesis")
|
354 |
+
else:
|
355 |
+
print("Fail to reject the null hypothesis")
|
356 |
+
|
357 |
+
print("Sample Mean:", sample_mean)
|
358 |
+
print("Sample Standard Deviation:", sample_std)
|
359 |
+
print("Sample Size:", sample_size)
|
360 |
+
print("Test Statistic (z-score):", z_score)
|
361 |
+
print("Critical Value (z-value):", critical_value)
|
362 |
+
print("P-value:", p_value)
|
363 |
+
|
364 |
+
|
365 |
+
|
366 |
+
def bootstrap_confidence_interval(data: np.ndarray, num_bootstrap_samples: int=1000, confidence_level: float=0.95) -> tuple:
|
367 |
+
"""
|
368 |
+
Calculate the confidence interval using bootstrapping.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
data (array-like): The original data.
|
372 |
+
num_bootstrap_samples (int): The number of bootstrap samples to generate.
|
373 |
+
confidence_level (float): The desired confidence level (between 0 and 1).
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
tuple: Lower and upper bounds of the confidence interval.
|
377 |
+
|
378 |
+
"""
|
379 |
+
# Convert the data to a NumPy array
|
380 |
+
data = np.array(data)
|
381 |
+
|
382 |
+
# Create an array to store the bootstrap sample statistics
|
383 |
+
bootstrap_samples = np.zeros(num_bootstrap_samples)
|
384 |
+
|
385 |
+
# Perform bootstrapping
|
386 |
+
for i in range(num_bootstrap_samples):
|
387 |
+
# Generate a bootstrap sample by randomly sampling with replacement from the original data
|
388 |
+
bootstrap_sample = np.random.choice(data, size=len(data), replace=True)
|
389 |
+
|
390 |
+
# Calculate the statistic of interest on the bootstrap sample
|
391 |
+
bootstrap_statistic = np.mean(bootstrap_sample)
|
392 |
+
|
393 |
+
# Store the bootstrap statistic
|
394 |
+
bootstrap_samples[i] = bootstrap_statistic
|
395 |
+
|
396 |
+
# Calculate the lower and upper percentiles of the bootstrap samples
|
397 |
+
lower_percentile = (1 - confidence_level) / 2
|
398 |
+
upper_percentile = 1 - lower_percentile
|
399 |
+
|
400 |
+
lower_bound = np.percentile(bootstrap_samples, lower_percentile * 100)
|
401 |
+
upper_bound = np.percentile(bootstrap_samples, upper_percentile * 100)
|
402 |
+
print(f"Confidence interval: [{lower_bound:.2f}, {upper_bound:.2f}]")
|
403 |
+
return lower_bound, upper_bound
|
404 |
+
|
405 |
+
# Print the confidence interval
|
406 |
+
def violinplot(data: pd.DataFrame, category_column: str, numeric_column: str, xlabel: str = 'Category',
|
407 |
+
ylabel: str = "Numeric values", title: str = "Title" ,figsize: Tuple[float, float] = (8,8)) -> None:
|
408 |
+
"""
|
409 |
+
Creates a violin plot for the given dataframe using the specified category column and numeric column.
|
410 |
+
|
411 |
+
Args:
|
412 |
+
data (pd.DataFrame): The input dataframe to plot.
|
413 |
+
category_column (str): The name of the column to use as the categorical variable.
|
414 |
+
numeric_column (str): The name of the column to use as the numeric variable.
|
415 |
+
xlabel (str, optional): The label for the x-axis. Defaults to 'Category'.
|
416 |
+
ylabel (str, optional): The label for the y-axis. Defaults to 'Numeric values'.
|
417 |
+
title (str, optional): The title for the plot. Defaults to 'Title'.
|
418 |
+
figsize (Tuple[float, float], optional): The size of the figure.
|
419 |
+
|
420 |
+
|
421 |
+
Returns:
|
422 |
+
Violin plot
|
423 |
+
"""
|
424 |
+
fig = plt.figure(figsize = figsize)
|
425 |
+
ax = fig.gca()
|
426 |
+
sns.set_style('whitegrid')
|
427 |
+
# cmap naudojama spalvu palete
|
428 |
+
sns.violinplot(x = category_column, y = numeric_column, data = data, ax = ax)
|
429 |
+
|
430 |
+
|
431 |
+
ax.set_title(title)
|
432 |
+
ax.set_ylabel(ylabel)
|
433 |
+
ax.set_xlabel(xlabel)
|
434 |
+
|
435 |
+
|
436 |
+
|
437 |
+
|
438 |
+
def kdePlot(datacolumn: pd.Series, xlabel: str = 'Size', ylabel: str = 'Density',
|
439 |
+
title: str = "Kernel density plot", figsize: Tuple[int, int] = (10,10) ) -> None:
|
440 |
+
"""
|
441 |
+
Creates a kernel density plot for the given pandas series.
|
442 |
+
|
443 |
+
Args:
|
444 |
+
datacolumn (pd.Series): The input data to plot.
|
445 |
+
xlabel (str, optional): The label for the x-axis. Defaults to 'Size'.
|
446 |
+
ylabel (str, optional): The label for the y-axis. Defaults to 'Density'.
|
447 |
+
title (str, optional): The title for the plot. Defaults to 'Kernel density plot'.
|
448 |
+
figsize (Tuple[int, int], optional): The size of the figure. Defaults to (10,10).
|
449 |
+
|
450 |
+
Returns:
|
451 |
+
Kernel density plot
|
452 |
+
"""
|
453 |
+
fig = plt.figure(figsize = figsize)
|
454 |
+
ax = fig.gca()
|
455 |
+
sns.set_style('whitegrid')
|
456 |
+
# vizualizuoja, variklio dydi pagal kuro tipa
|
457 |
+
sns.kdeplot(datacolumn,ax=ax)
|
458 |
+
ax.set_title(title)
|
459 |
+
ax.set_ylabel(ylabel)
|
460 |
+
ax.set_xlabel(xlabel)
|
461 |
+
|
462 |
+
|
463 |
+
|
464 |
+
@staticmethod
|
465 |
+
def OneD_Bar_Sublots (counts_list: List[pd.Series], subtitle: str = "Bar chart subplots",
|
466 |
+
xlabel: str = 'Category', ylabel: str = 'Values', figsize = (10,10)) -> None:
|
467 |
+
"""
|
468 |
+
Creates multiple bar chart subplots for the given list of pandas series.
|
469 |
+
|
470 |
+
Args:
|
471 |
+
counts_list (List[pd.Series]): The list of data to plot.
|
472 |
+
subtitle (str, optional): The subtitle for the plot. Defaults to 'Bar chart subplots'.
|
473 |
+
xlabel (str, optional): The label for the x-axis. Defaults to 'Category'.
|
474 |
+
ylabel (str, optional): The label for the y-axis. Defaults to 'Values'.
|
475 |
+
|
476 |
+
Returns:
|
477 |
+
One dimension barchart subplots
|
478 |
+
"""
|
479 |
+
fig, axs = plt.subplots(1, len(counts_list), figsize=figsize)
|
480 |
+
for idx, i in enumerate(counts_list):
|
481 |
+
axs[idx].bar(i.index, i.values)
|
482 |
+
axs[idx].set_title(input(f'Set title for {i.name} subplot (they are in same order as in your list): '))
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
for ax in axs.flat:
|
487 |
+
for p in ax.patches:
|
488 |
+
ax.text(
|
489 |
+
p.get_x() + p.get_width() / 2,
|
490 |
+
p.get_height(),
|
491 |
+
p.get_height(),
|
492 |
+
ha="center",
|
493 |
+
va="bottom",
|
494 |
+
|
495 |
+
)
|
496 |
+
|
497 |
+
fig.suptitle(subtitle)
|
498 |
+
plt.xlabel(xlabel )
|
499 |
+
plt.ylabel(ylabel)
|
500 |
+
|
501 |
+
# Show the plot
|
502 |
+
plt.show()
|
503 |
+
|
504 |
+
def histogram(dataframe_column: pd.Series, title: str = "Title", xlabel: str = "Sizes",
|
505 |
+
ylabel: str = "Amount", figsize: tuple = (10, 10), rotation: int = 0) -> None:
|
506 |
+
"""
|
507 |
+
This function creates a histogram plot of a given pandas Series.
|
508 |
+
|
509 |
+
Args:
|
510 |
+
dataframe_column (pd.Series): A pandas Series object to be plotted.
|
511 |
+
title (str, optional): The title of the histogram. Defaults to "Title".
|
512 |
+
xlabel (str, optional): The label of the x-axis. Defaults to "Sizes".
|
513 |
+
ylabel (str, optional): The label of the y-axis. Defaults to "Amount".
|
514 |
+
figsize (tuple, optional): The size of the figure. Defaults to (10, 10).
|
515 |
+
rotation (int, optional): The rotation of the x-tick labels. Defaults to 0.
|
516 |
+
|
517 |
+
Returns:
|
518 |
+
None
|
519 |
+
"""
|
520 |
+
values = dataframe_column.values
|
521 |
+
fig = plt.figure(figsize=figsize)
|
522 |
+
plt.rotation = rotation
|
523 |
+
ax = fig.gca()
|
524 |
+
dataframe_column.plot.hist(ax=ax)
|
525 |
+
ax.set_title(title)
|
526 |
+
ax.set_xlabel(xlabel)
|
527 |
+
ax.set_ylabel(ylabel)
|
528 |
+
|
529 |
+
def oneD_piechart_subplots(data_list: list[pd.Series], subtitle: str = "Pie chart subplots", figsize: tuple[int, int] = (15, 10)) -> None:
|
530 |
+
"""
|
531 |
+
Plot one-dimensional pie chart subplots.
|
532 |
+
|
533 |
+
Parameters:
|
534 |
+
data_list (list[pd.Series]): A list of Pandas Series objects containing the data to plot.
|
535 |
+
subtitle (str): The title of the plot. Default is 'Pie chart subplots'.
|
536 |
+
figsize (tuple[int, int]): The size of the figure. Default is (15, 10).
|
537 |
+
|
538 |
+
Returns:
|
539 |
+
None
|
540 |
+
|
541 |
+
Raises:
|
542 |
+
ValueError: If `data_list` is empty.
|
543 |
+
"""
|
544 |
+
fig, axs = plt.subplots(1, len(data_list), figsize=figsize)
|
545 |
+
for idx, i in enumerate(data_list):
|
546 |
+
axs[idx].pie(
|
547 |
+
i.values.astype(float),
|
548 |
+
labels=i.index,
|
549 |
+
autopct="%1.1f%%",
|
550 |
+
)
|
551 |
+
axs[idx].set_title(
|
552 |
+
input(
|
553 |
+
f"Set title for {i.name} subplot (they are in same order as in your list): "
|
554 |
+
)
|
555 |
+
)
|
556 |
+
# Plot a pie chart on each of the subplots
|
557 |
+
|
558 |
+
# Add a title to the figure
|
559 |
+
fig.suptitle(subtitle)
|
560 |
+
|
561 |
+
# Show the plot
|
562 |
+
plt.show()
|
563 |
+
|
564 |
+
def calculate_mean_last_five_results_for_all_matches(dataframe: pd.DataFrame) -> pd.DataFrame:
|
565 |
+
"""
|
566 |
+
Calculate the mean of the last five results for both home and away teams for all matches.
|
567 |
+
|
568 |
+
Args:
|
569 |
+
dataframe (pd.DataFrame): The DataFrame containing match data.
|
570 |
+
|
571 |
+
Returns:
|
572 |
+
pd.DataFrame: The original DataFrame with additional columns for mean results.
|
573 |
+
"""
|
574 |
+
# Create new columns to store the mean results for home and away teams
|
575 |
+
dataframe["mean_result_home"] = np.nan
|
576 |
+
dataframe["mean_result_away"] = np.nan
|
577 |
+
|
578 |
+
for index, row in dataframe.iterrows():
|
579 |
+
home_team_api_id = row["home_team_api_id"]
|
580 |
+
away_team_api_id = row["away_team_api_id"]
|
581 |
+
|
582 |
+
# Calculate the mean result for the home team
|
583 |
+
mean_result_home, _ = calculate_mean_last_five_results(dataframe, home_team_api_id, "result_home", index)
|
584 |
+
|
585 |
+
# Calculate the mean result for the away team
|
586 |
+
mean_result_away, _ = calculate_mean_last_five_results(dataframe, away_team_api_id, "result_away", index)
|
587 |
+
|
588 |
+
# Update the DataFrame with the mean results
|
589 |
+
dataframe.at[index, "mean_result_home"] = mean_result_home
|
590 |
+
dataframe.at[index, "mean_result_away"] = mean_result_away
|
591 |
+
|
592 |
+
return dataframe
|
593 |
+
|
594 |
+
def calculate_mean_last_five_results(dataframe: pd.DataFrame, team_api_id: int, result_column: str, current_match_index: int) -> Tuple[float, list]:
|
595 |
+
"""
|
596 |
+
Calculate the mean of the last five results for a specific team.
|
597 |
+
|
598 |
+
Args:
|
599 |
+
dataframe (pd.DataFrame): The DataFrame containing match data.
|
600 |
+
team_api_id (int): The API ID of the team for which to calculate the mean.
|
601 |
+
result_column (str): The name of the column containing match results.
|
602 |
+
current_match_index (int): The index of the current match being processed.
|
603 |
+
|
604 |
+
Returns:
|
605 |
+
Tuple[float, list]: A tuple containing the mean result (float) and a list of meanings for the last five results.
|
606 |
+
"""
|
607 |
+
# Filter the DataFrame for matches involving the specified team
|
608 |
+
team_matches = dataframe[(dataframe["home_team_api_id"] == team_api_id) | (dataframe["away_team_api_id"] == team_api_id)]
|
609 |
+
|
610 |
+
# Exclude the current match from the calculations
|
611 |
+
team_matches = team_matches[team_matches.index != current_match_index]
|
612 |
+
|
613 |
+
# Sort the matches by index (assuming the DataFrame is sorted by date)
|
614 |
+
team_matches = team_matches.sort_index(ascending=False)
|
615 |
+
|
616 |
+
# Extract the last five results for the team (or all available if fewer than five)
|
617 |
+
last_five_results = team_matches[result_column].head(5).values
|
618 |
+
|
619 |
+
# Map the result codes to their corresponding meanings (1: Loss, 2: Draw, 3: Win)
|
620 |
+
result_meanings = {1: "Loss", 2: "Draw", 3: "Win"}
|
621 |
+
last_five_results_meaning = [result_meanings[result_code] for result_code in last_five_results]
|
622 |
+
|
623 |
+
# Calculate the mean of the results (1: Loss, 2: Draw, 3: Win)
|
624 |
+
mean_result = np.mean(last_five_results)
|
625 |
+
|
626 |
+
return mean_result, last_five_results_meaning
|
627 |
+
|
628 |
+
def calculate_mean_last_five_home_results(dataframe: pd.DataFrame, team_api_id: int, result_column: str, current_match_index: int) -> Tuple[float, list]:
|
629 |
+
"""
|
630 |
+
Calculate the mean of the last five home results for a specific team.
|
631 |
+
|
632 |
+
Args:
|
633 |
+
dataframe (pd.DataFrame): The DataFrame containing match data.
|
634 |
+
team_api_id (int): The API ID of the team for which to calculate the mean.
|
635 |
+
result_column (str): The name of the column containing match results.
|
636 |
+
current_match_index (int): The index of the current match being processed.
|
637 |
+
|
638 |
+
Returns:
|
639 |
+
Tuple[float, list]: A tuple containing the mean result (float) and a list of meanings for the last five home results.
|
640 |
+
"""
|
641 |
+
# Filter the DataFrame for matches where the team is the home team
|
642 |
+
home_matches = dataframe[dataframe["home_team_api_id"] == team_api_id]
|
643 |
+
|
644 |
+
# Exclude the current match from the calculations
|
645 |
+
home_matches = home_matches[home_matches.index != current_match_index]
|
646 |
+
|
647 |
+
# Sort the matches by index (assuming the DataFrame is sorted by date)
|
648 |
+
home_matches = home_matches.sort_index(ascending=False)
|
649 |
+
|
650 |
+
# Extract the last five home results for the team (or all available if fewer than five)
|
651 |
+
last_five_home_results = home_matches[result_column].head(5).values
|
652 |
+
|
653 |
+
# Map the result codes to their corresponding meanings (1: Loss, 2: Draw, 3: Win)
|
654 |
+
result_meanings = {1: "Loss", 2: "Draw", 3: "Win"}
|
655 |
+
last_five_home_results_meaning = [result_meanings[result_code] for result_code in last_five_home_results]
|
656 |
+
|
657 |
+
# Calculate the mean of the home results (1: Loss, 2: Draw, 3: Win)
|
658 |
+
mean_home_result = np.mean(last_five_home_results)
|
659 |
+
|
660 |
+
return mean_home_result, last_five_home_results_meaning
|
661 |
+
|
662 |
+
def calculate_mean_last_five_away_results(dataframe: pd.DataFrame, team_api_id: int, result_column: str, current_match_index: int) -> Tuple[float, list]:
|
663 |
+
"""
|
664 |
+
Calculate the mean of the last five away results for a specific team.
|
665 |
+
|
666 |
+
Args:
|
667 |
+
dataframe (pd.DataFrame): The DataFrame containing match data.
|
668 |
+
team_api_id (int): The API ID of the team for which to calculate the mean.
|
669 |
+
result_column (str): The name of the column containing match results.
|
670 |
+
current_match_index (int): The index of the current match being processed.
|
671 |
+
|
672 |
+
Returns:
|
673 |
+
Tuple[float, list]: A tuple containing the mean result (float) and a list of meanings for the last five away results.
|
674 |
+
"""
|
675 |
+
# Filter the DataFrame for matches where the team is the away team
|
676 |
+
away_matches = dataframe[dataframe["away_team_api_id"] == team_api_id]
|
677 |
+
|
678 |
+
# Exclude the current match from the calculations
|
679 |
+
away_matches = away_matches[away_matches.index != current_match_index]
|
680 |
+
|
681 |
+
# Sort the matches by index (assuming the DataFrame is sorted by date)
|
682 |
+
away_matches = away_matches.sort_index(ascending=False)
|
683 |
+
|
684 |
+
# Extract the last five away results for the team (or all available if fewer than five)
|
685 |
+
last_five_away_results = away_matches[result_column].head(5).values
|
686 |
+
|
687 |
+
# Map the result codes to their corresponding meanings (1: Loss, 2: Draw, 3: Win)
|
688 |
+
result_meanings = {1: "Loss", 2: "Draw", 3: "Win"}
|
689 |
+
last_five_away_results_meaning = [result_meanings[result_code] for result_code in last_five_away_results]
|
690 |
+
|
691 |
+
# Calculate the mean of the away results (1: Loss, 2: Draw, 3: Win)
|
692 |
+
mean_away_result = np.mean(last_five_away_results)
|
693 |
+
|
694 |
+
return mean_away_result, last_five_away_results_meaning
|
695 |
+
|
696 |
+
def getTeamResult(row):
|
697 |
+
if row["winning_team"] == "1":
|
698 |
+
home_team_result = "Win"
|
699 |
+
away_team_result = "Loss"
|
700 |
+
elif row["winning_team"] == "3":
|
701 |
+
home_team_result = "Loss"
|
702 |
+
away_team_result = "Win"
|
703 |
+
else:
|
704 |
+
home_team_result = "Draw"
|
705 |
+
away_team_result = "Draw"
|
706 |
+
|
707 |
+
return [home_team_result, away_team_result]
|
708 |
+
|
709 |
+
def calculate_rolling_means(df, feature, window_size=5):
|
710 |
+
"""
|
711 |
+
Calculate rolling means for a specified feature for both home and away games.
|
712 |
+
|
713 |
+
Args:
|
714 |
+
df (pd.DataFrame): The DataFrame containing match data.
|
715 |
+
feature (str): The name of the feature for which to calculate rolling means.
|
716 |
+
window_size (int): The size of the rolling window (default is 5).
|
717 |
+
|
718 |
+
Returns:
|
719 |
+
pd.DataFrame: The DataFrame with additional columns for rolling means.
|
720 |
+
"""
|
721 |
+
# Calculate the rolling mean for home games
|
722 |
+
df[feature + "_home_game"] = df.groupby("home_team_api_id")[feature].transform(
|
723 |
+
lambda x: x.rolling(window=window_size, min_periods=1).mean()
|
724 |
+
)
|
725 |
+
|
726 |
+
# Calculate the rolling mean for away games
|
727 |
+
df[feature + "_away_game"] = df.groupby("away_team_api_id")[feature].transform(
|
728 |
+
lambda x: x.rolling(window=window_size, min_periods=1).mean()
|
729 |
+
)
|
730 |
+
|
731 |
+
# Calculate the rolling mean difference between home and away teams
|
732 |
+
df[feature + "_RMean_Diff"] = (
|
733 |
+
df[feature + "_home_game"] - df[feature + "_away_game"]
|
734 |
+
)
|
735 |
+
|
736 |
+
return df
|
737 |
+
|
738 |
+
def delete_player_columns(df, start_player=1, end_player=11):
|
739 |
+
for i in range(start_player, end_player + 1):
|
740 |
+
columns_to_delete = [col for col in df.columns if col.endswith(f"player_{i}")]
|
741 |
+
df.drop(columns=columns_to_delete, inplace=True)
|
742 |
+
return df
|
743 |
+
|
744 |
+
|
745 |
+
def calculate_team_mean_cat_data(df, team, feature_name, start_player=1, end_player=11):
|
746 |
+
# Generate the list of player columns based on the specified range
|
747 |
+
player_columns = [
|
748 |
+
f"{feature_name}_{team}_player_{i}" for i in range(start_player, end_player + 1)
|
749 |
+
]
|
750 |
+
|
751 |
+
# Convert the player columns to numeric (replace non-numeric values with NaN)
|
752 |
+
df[player_columns] = df[player_columns].apply(pd.to_numeric, errors="coerce")
|
753 |
+
|
754 |
+
# Calculate the mean for the specified player columns
|
755 |
+
df[f"{team}_team_mean_{feature_name}"] = df[player_columns].mean(axis=1)
|
756 |
+
|
757 |
+
# Drop the player columns that were used to calculate the mean
|
758 |
+
df.drop(columns=player_columns, inplace=True)
|
759 |
+
|
760 |
+
# Convert the "defensive_work_rate" columns to numeric values based on player number
|
761 |
+
encoding_map = {"low": 1, "medium": 2, "high": 3}
|
762 |
+
for i in range(start_player, end_player + 1):
|
763 |
+
defensive_work_rate_column = f"{feature_name}_{team}_player_{i}"
|
764 |
+
# Check if the column exists before replacing values
|
765 |
+
if defensive_work_rate_column in df.columns:
|
766 |
+
df[defensive_work_rate_column] = df[defensive_work_rate_column].replace(
|
767 |
+
encoding_map
|
768 |
+
)
|
769 |
+
|
770 |
+
return df
|
771 |
+
def calculate_team_mean(df, team, feature_name, start_player=1, end_player=11):
|
772 |
+
player_columns = [f"{team}_player_{i}" for i in range(start_player, end_player + 1)]
|
773 |
+
player_feature_columns = [
|
774 |
+
f"{feature_name}_{team}_player_{i}" for i in range(start_player, end_player + 1)
|
775 |
+
]
|
776 |
+
|
777 |
+
# Check if all player feature columns exist
|
778 |
+
if all(col in df.columns for col in player_feature_columns):
|
779 |
+
df[f"{team}_team_mean_{feature_name}"] = df[player_feature_columns].mean(axis=1)
|
780 |
+
df.drop(columns=player_feature_columns, inplace=True)
|
781 |
+
else:
|
782 |
+
print("Player feature columns do not exist in the DataFrame.")
|
783 |
+
|
784 |
+
return df
|
785 |
+
|
786 |
+
|
787 |
+
def pie_count_subplot_single(data_column, title):
|
788 |
+
f, ax = plt.subplots(1, 2, figsize=(18, 8))
|
789 |
+
|
790 |
+
# Plot pie chart
|
791 |
+
data_column.value_counts().plot.pie(explode=[0, 0.1], autopct='%1.1f%%', ax=ax[0], shadow=True)
|
792 |
+
ax[0].set_title(title)
|
793 |
+
ax[0].set_ylabel('')
|
794 |
+
|
795 |
+
# Plot countplot
|
796 |
+
sns.countplot(x=data_column.name, data=data_column.to_frame(), ax=ax[1])
|
797 |
+
ax[1].set_title(title)
|
798 |
+
|
799 |
+
plt.show()
|
800 |
+
|
801 |
+
def bar_hued_barchart(data: pd.DataFrame, column: str, hue_column: str, title1: str = 'title1', title2: str = 'title2', title: str = 'title', xlabel1: str = 'xlabel1', xlabel2: str = 'xlabel2'):
|
802 |
+
"""
|
803 |
+
Plot a bar chart and a hued bar chart for the specified columns with customizable titles and x-axis labels.
|
804 |
+
|
805 |
+
Parameters:
|
806 |
+
data (pd.DataFrame): The DataFrame containing the data.
|
807 |
+
column (str): The column to be plotted on the x-axis.
|
808 |
+
hue_column (str): The column to be used for hue in the countplot.
|
809 |
+
title1 (str): The title for the first subplot (bar chart). Default is 'title1'.
|
810 |
+
title2 (str): The title for the second subplot (countplot). Default is 'title2'.
|
811 |
+
title (str): The general title for the plots. Default is 'title'.
|
812 |
+
xlabel1 (str): The x-axis label for the first subplot. Default is 'xlabel1'.
|
813 |
+
xlabel2 (str): The x-axis label for the second subplot. Default is 'xlabel2'.
|
814 |
+
"""
|
815 |
+
f, ax = plt.subplots(1, 2, figsize=(18, 8))
|
816 |
+
|
817 |
+
# Plot bar chart
|
818 |
+
data[[column, hue_column]].groupby([column]).mean().plot.bar(ax=ax[0])
|
819 |
+
ax[0].set_title(title1)
|
820 |
+
ax[0].set_xlabel(xlabel1)
|
821 |
+
|
822 |
+
# Plot countplot
|
823 |
+
sns.countplot(x=column, hue=hue_column, data=data, ax=ax[1])
|
824 |
+
ax[1].set_title(title2)
|
825 |
+
ax[1].set_xlabel(xlabel2)
|
826 |
+
|
827 |
+
plt.suptitle(title)
|
828 |
+
plt.show()
|
829 |
+
|
830 |
+
def plot_count_and_hue(data: pd.DataFrame, x_column: str, hue_column: str):
|
831 |
+
"""
|
832 |
+
Plot two countplots: one without hue and one with hue.
|
833 |
+
|
834 |
+
Parameters:
|
835 |
+
data (pd.DataFrame): The DataFrame containing the data.
|
836 |
+
x_column (str): The categorical variable to be plotted on the x-axis.
|
837 |
+
hue_column (str): The categorical variable to be used for hue.
|
838 |
+
"""
|
839 |
+
# Create subplots with 1 row and 2 columns
|
840 |
+
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
|
841 |
+
|
842 |
+
# Plot countplot without hue
|
843 |
+
sns.countplot(x=x_column, data=data, ax=axes[0])
|
844 |
+
axes[0].set_title(f'Countplot of {x_column}')
|
845 |
+
|
846 |
+
# Plot countplot with hue
|
847 |
+
sns.countplot(x=x_column, hue=hue_column, data=data, ax=axes[1])
|
848 |
+
axes[1].set_title(f'Countplot of {x_column} with Hue {hue_column}')
|
849 |
+
|
850 |
+
# Adjust spacing between subplots
|
851 |
+
plt.tight_layout()
|
852 |
+
|
853 |
+
# Show the plots
|
854 |
+
plt.show()
|
855 |
+
|
856 |
+
def plot_proportion_stacked_bar(data: pd.DataFrame, x_column: str, hue_column: str,title:str):
|
857 |
+
"""
|
858 |
+
Plot a stacked bar chart to visualize the proportion of hued counts.
|
859 |
+
|
860 |
+
Parameters:
|
861 |
+
data (pd.DataFrame): The DataFrame containing the data.
|
862 |
+
x_column (str): The categorical variable to be plotted on the x-axis.
|
863 |
+
hue_column (str): The categorical variable to be used for hue.
|
864 |
+
"""
|
865 |
+
# Create a contingency table
|
866 |
+
contingency_table = pd.crosstab(data[x_column], data[hue_column], normalize='index')
|
867 |
+
|
868 |
+
ax = contingency_table.plot(kind='bar', stacked=True, rot=0)
|
869 |
+
ax.legend(title=hue_column, bbox_to_anchor=(1, 1.02), loc='upper left')
|
870 |
+
|
871 |
+
# add annotations if desired
|
872 |
+
for c in ax.containers:
|
873 |
+
|
874 |
+
# set the bar label
|
875 |
+
ax.bar_label(c, label_type='center')
|
876 |
+
ax.set_title(title)
|
877 |
+
|
878 |
+
def plot_bar_and_stacked_bar(data: pd.DataFrame, x_column: str, hue_column: str, title: str=None, subplot_title: str = None, main_title: str = None,figsize:tuple = (12,8)):
|
879 |
+
"""
|
880 |
+
Plot a bar chart of data[x_column] followed by a stacked bar chart to visualize the proportion of hued counts.
|
881 |
+
|
882 |
+
Parameters:
|
883 |
+
data (pd.DataFrame): The DataFrame containing the data.
|
884 |
+
x_column (str): The categorical variable to be plotted on the x-axis.
|
885 |
+
hue_column (str): The categorical variable to be used for hue.
|
886 |
+
title (str): The title for the plot.
|
887 |
+
subplot_title (str, optional): The title for the subplot.
|
888 |
+
main_title (str, optional): The main title for the plot.
|
889 |
+
|
890 |
+
Returns:
|
891 |
+
tuple[str, str, str]: The titles of the bar chart, stacked bar chart, and subplot.
|
892 |
+
"""
|
893 |
+
# Check if there are multiple categories in x_column
|
894 |
+
if len(data[x_column].unique()) > 1:
|
895 |
+
# Create a figure with subplots for both charts
|
896 |
+
fig, axes = plt.subplots(1, 2, figsize = figsize)
|
897 |
+
|
898 |
+
# Create a bar chart for data[x_column]
|
899 |
+
data[x_column].value_counts().plot(kind='bar', ax=axes[0], rot=0)
|
900 |
+
axes[0].set_title(f'Bar Chart of {x_column}')
|
901 |
+
|
902 |
+
# Create a contingency table for the stacked bar chart
|
903 |
+
contingency_table = pd.crosstab(data[x_column], data[hue_column], normalize='index')
|
904 |
+
|
905 |
+
ax = contingency_table.plot(kind='bar', stacked=True, rot=0, ax=axes[1])
|
906 |
+
ax.legend(title='Stacked Barchart of ' + hue_column, bbox_to_anchor=(1, 1.02), loc='upper left')
|
907 |
+
else:
|
908 |
+
# Only one category in x_column, so create only the stacked bar chart
|
909 |
+
plt.figure(figsize=figsize)
|
910 |
+
contingency_table = pd.crosstab(data[x_column], data[hue_column], normalize='index')
|
911 |
+
ax = contingency_table.plot(kind='bar', stacked=True, rot=0)
|
912 |
+
ax.legend(title='Stacked Barchart of ' + hue_column, bbox_to_anchor=(1, 1.02), loc='upper left')
|
913 |
+
# add annotations if desired
|
914 |
+
for c in ax.containers:
|
915 |
+
|
916 |
+
# set the bar label
|
917 |
+
ax.bar_label(c, label_type='center')
|
918 |
+
|
919 |
+
# Set the title of the plot
|
920 |
+
if main_title is not None:
|
921 |
+
plt.suptitle(main_title, fontsize=16)
|
922 |
+
|
923 |
+
# Adjust layout for better spacing between subplots
|
924 |
+
plt.tight_layout()
|
925 |
+
plt.title(' Stacked barchart in comparison with' + hue_column )
|
926 |
+
plt.show()
|
927 |
+
|
928 |
+
def lasso_classifier(X_train,y_train,X_test,y_test,X):
|
929 |
+
|
930 |
+
lasso_classifier = LogisticRegression(penalty="l1", solver="liblinear", random_state=42)
|
931 |
+
lasso_classifier.fit(X_train, y_train)
|
932 |
+
|
933 |
+
|
934 |
+
y_pred = lasso_classifier.predict(X_test)
|
935 |
+
|
936 |
+
|
937 |
+
accuracy = accuracy_score(y_test, y_pred)
|
938 |
+
print("Accuracy:", accuracy)
|
939 |
+
|
940 |
+
precision = precision_score(y_test, y_pred)
|
941 |
+
print("Precision:", precision)
|
942 |
+
|
943 |
+
lasso_coefficients = lasso_classifier.coef_[0]
|
944 |
+
|
945 |
+
|
946 |
+
lasso_abs_coefficients = np.abs(lasso_coefficients)
|
947 |
+
|
948 |
+
top_20_lasso_indices = np.argsort(lasso_abs_coefficients)[-20:]
|
949 |
+
|
950 |
+
|
951 |
+
top_20_lasso_feature_names = X.columns[top_20_lasso_indices]
|
952 |
+
|
953 |
+
|
954 |
+
top_20_lasso_coefficients = lasso_coefficients[top_20_lasso_indices]
|
955 |
+
|
956 |
+
# Create a bar plot to visualize the top 20 most important features for Lasso
|
957 |
+
plt.figure(figsize=(12, 8))
|
958 |
+
plt.barh(top_20_lasso_feature_names, top_20_lasso_coefficients)
|
959 |
+
plt.xlabel("Coefficient Value (Lasso)")
|
960 |
+
plt.title("Most Important Features - Lasso")
|
961 |
+
plt.gca().invert_yaxis() # Invert y-axis to display the most important feature at the top
|
962 |
+
plt.show()
|
963 |
+
|
964 |
+
def ridge_classifier(X_train,y_train,X_test,y_test,X):
|
965 |
+
ridge_classifier = LogisticRegression(penalty="l2", solver="liblinear", random_state=42)
|
966 |
+
ridge_classifier.fit(X_train, y_train)
|
967 |
+
|
968 |
+
|
969 |
+
y_pred = ridge_classifier.predict(X_test)
|
970 |
+
|
971 |
+
|
972 |
+
accuracy = accuracy_score(y_test, y_pred)
|
973 |
+
print("Accuracy:", accuracy)
|
974 |
+
|
975 |
+
precision = precision_score(y_test, y_pred)
|
976 |
+
print("Precision:", precision)
|
977 |
+
|
978 |
+
|
979 |
+
ridge_coefficients = ridge_classifier.coef_[0]
|
980 |
+
|
981 |
+
|
982 |
+
ridge_abs_coefficients = np.abs(ridge_coefficients)
|
983 |
+
|
984 |
+
|
985 |
+
top_20_ridge_indices = np.argsort(ridge_abs_coefficients)[-20:]
|
986 |
+
|
987 |
+
|
988 |
+
top_20_ridge_feature_names = X.columns[top_20_ridge_indices]
|
989 |
+
|
990 |
+
|
991 |
+
top_20_ridge_coefficients = ridge_coefficients[top_20_ridge_indices]
|
992 |
+
|
993 |
+
|
994 |
+
plt.figure(figsize=(12, 8))
|
995 |
+
plt.barh(top_20_ridge_feature_names, top_20_ridge_coefficients)
|
996 |
+
plt.xlabel("Coefficient Value (Ridge)")
|
997 |
+
plt.title("Top 20 Most Important Features - Ridge")
|
998 |
+
plt.gca().invert_yaxis() # Invert y-axis to display the most important feature at the top
|
999 |
+
plt.show()
|
1000 |
+
|
1001 |
+
def is_binary(series):
|
1002 |
+
unique_values = series.unique()
|
1003 |
+
return len(unique_values) == 2 and set(unique_values) == {0, 1}
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import pickle
|
3 |
+
import streamlit as st
|
4 |
+
import joblib
|
5 |
+
import shap
|
6 |
+
import pandas as pd
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
|
10 |
+
# Load the LightGBM model and other necessary objects
|
11 |
+
with open('lgb1_model.pkl', 'rb') as f:
|
12 |
+
lgb1 = pickle.load(f)
|
13 |
+
|
14 |
+
categorical_features = joblib.load("categorical_features.joblib")
|
15 |
+
encoder = joblib.load("encoder.joblib")
|
16 |
+
|
17 |
+
# Sidebar option to select the dashboard
|
18 |
+
option = st.sidebar.selectbox("Which dashboard?", ("Model information", "Stroke prediction"))
|
19 |
+
st.title(option)
|
20 |
+
|
21 |
+
def get_pred():
|
22 |
+
"""
|
23 |
+
Function to display the stroke probability calculator and Shap force plot.
|
24 |
+
"""
|
25 |
+
st.header("Stroke probability calculator ")
|
26 |
+
|
27 |
+
# User input for prediction
|
28 |
+
gender = st.selectbox("Select gender: ", ["Male", "Female", 'Other'])
|
29 |
+
work_type = st.selectbox("Work type: ", ["Private", "Self_employed", 'children', 'Govt_job', 'Never_worked'])
|
30 |
+
residence_status = st.selectbox("Residence status: ", ["Urban", "Rural"])
|
31 |
+
smoking_status = st.selectbox("Smoking status: ", ["Unknown", "formerly smoked", 'never smoked', 'smokes'])
|
32 |
+
age = st.slider("Input age: ", 0, 120)
|
33 |
+
hypertension = st.select_slider("Do you have hypertension: ", [0, 1])
|
34 |
+
heart_disease = st.select_slider("Do you have heart disease: ", [0, 1])
|
35 |
+
ever_married = st.select_slider("Have you ever married? ", [0, 1])
|
36 |
+
avg_glucosis_lvl = st.slider("Average glucosis level: ", 50, 280)
|
37 |
+
bmi = st.slider("Input Bmi: ", 10, 100)
|
38 |
+
|
39 |
+
# User input data
|
40 |
+
data = {
|
41 |
+
"gender": gender,
|
42 |
+
"work_type": work_type,
|
43 |
+
"Residence_type": residence_status,
|
44 |
+
"smoking_status": smoking_status,
|
45 |
+
"age": age,
|
46 |
+
"hypertension": hypertension,
|
47 |
+
"heart_disease": heart_disease,
|
48 |
+
"ever_married": ever_married,
|
49 |
+
"avg_glucose_level": avg_glucosis_lvl,
|
50 |
+
"bmi": bmi
|
51 |
+
}
|
52 |
+
|
53 |
+
# Prediction button
|
54 |
+
if st.button("Predict"):
|
55 |
+
# Convert input data to a DataFrame
|
56 |
+
X = pd.DataFrame([data])
|
57 |
+
|
58 |
+
# Encode categorical features
|
59 |
+
encoded_features = encoder.transform(X[categorical_features])
|
60 |
+
|
61 |
+
# Get the feature names from the encoder
|
62 |
+
feature_names = encoder.get_feature_names_out(input_features=categorical_features)
|
63 |
+
|
64 |
+
# Create a DataFrame with the encoded features and feature names
|
65 |
+
encoded_df = pd.DataFrame(encoded_features, columns=feature_names)
|
66 |
+
X_encoded = pd.concat([X.drop(columns=categorical_features), encoded_df], axis=1)
|
67 |
+
|
68 |
+
# Make predictions
|
69 |
+
prediction_proba = lgb1.predict_proba(X_encoded)
|
70 |
+
|
71 |
+
# Get SHAP values
|
72 |
+
explainer = shap.TreeExplainer(lgb1)
|
73 |
+
shap_values = explainer.shap_values(X_encoded)
|
74 |
+
|
75 |
+
# Extract prediction probability and display it to the user
|
76 |
+
probability = prediction_proba[0, 1] # Assuming binary classification
|
77 |
+
st.subheader(f"The predicted probability of stroke is {probability}.")
|
78 |
+
st.subheader("IF you see result , higher than 0.3, we advice you to see a doctor")
|
79 |
+
st.header("Shap forceplot")
|
80 |
+
st.subheader("Features values impact on model made prediction")
|
81 |
+
|
82 |
+
# Display SHAP force plot using Matplotlib
|
83 |
+
shap.force_plot(explainer.expected_value[1], shap_values[1], features=X_encoded.iloc[0, :], matplotlib=True)
|
84 |
+
|
85 |
+
# Save the figure to a BytesIO buffer
|
86 |
+
buf = io.BytesIO()
|
87 |
+
plt.savefig(buf, format="png", dpi=800)
|
88 |
+
buf.seek(0)
|
89 |
+
|
90 |
+
# Display the image in Streamlit
|
91 |
+
st.image(buf, width=1100)
|
92 |
+
|
93 |
+
# Display summary plot of feature importance
|
94 |
+
shap.summary_plot(shap_values[1], X_encoded)
|
95 |
+
|
96 |
+
# Display interaction summary plot
|
97 |
+
shap_interaction_values = explainer.shap_interaction_values(X_encoded)
|
98 |
+
shap.summary_plot(shap_interaction_values, X_encoded)
|
99 |
+
|
100 |
+
# Execute get_pred() only if the option is "Stroke prediction"
|
101 |
+
if option == "Stroke prediction":
|
102 |
+
get_pred()
|
103 |
+
|
104 |
+
if option == "Model information":
|
105 |
+
st.header("Light gradient boosting model")
|
106 |
+
st.subheader("First tree of light gradient boosting model and how it makes decisions")
|
107 |
+
st.image(r'lgbm_tree.png')
|
108 |
+
|
109 |
+
st.subheader("Shap values visualization of how features contribute to model prediction")
|
110 |
+
st.image(r'lgbm_model_shap_evaluation.png')
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/categorical_features.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f062d6d462ef03c00858d62fec2371dc86171d13ba4b46ba71f5442ec4d6a1b8
|
3 |
+
size 71
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/encoder.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e139e75012e09d62f164d3772c6ce662ad789301dc4b77eaa0011c05133727ed
|
3 |
+
size 2062
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/features.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a5cbd183100036afed0ce12e44bc66eaa9249a3f62eab9736ac6ef88a24e454
|
3 |
+
size 158
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/lgb1_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f8316f333a916e1295da52b74da9251ece8a6b695fb9b796f1ee859843d7862
|
3 |
+
size 162444
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/lgb1_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ae238aec1374c8eb1f1fad09d5324929ff544dedca84274f0009bc551c76795
|
3 |
+
size 162203
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/lgbm_model_shap_evaluation.png
ADDED
![]() |
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/lgbm_tree.png
ADDED
![]() |
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/mlapi.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
+
from pydantic import BaseModel
|
4 |
+
import pandas as pd
|
5 |
+
import joblib
|
6 |
+
import shap
|
7 |
+
|
8 |
+
# Create a FastAPI instance
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
# Load necessary objects
|
12 |
+
categorical_features = joblib.load("categorical_features.joblib")
|
13 |
+
features = joblib.load("features.joblib")
|
14 |
+
encoder = joblib.load("encoder.joblib")
|
15 |
+
|
16 |
+
# Define a Pydantic model for the input data
|
17 |
+
class ScoringItem(BaseModel):
|
18 |
+
gender: str
|
19 |
+
work_type: str
|
20 |
+
Residence_type: str
|
21 |
+
smoking_status: str
|
22 |
+
age: float
|
23 |
+
hypertension: int
|
24 |
+
heart_disease: int
|
25 |
+
ever_married: int
|
26 |
+
avg_glucose_level: float
|
27 |
+
bmi: float
|
28 |
+
|
29 |
+
# Load the LightGBM model
|
30 |
+
with open('lgb1_model.pkl', 'rb') as f:
|
31 |
+
model = pickle.load(f)
|
32 |
+
|
33 |
+
# Define the scoring endpoint
|
34 |
+
@app.post('/')
|
35 |
+
async def scoring_endpoint(item: ScoringItem):
|
36 |
+
try:
|
37 |
+
# Convert the Pydantic model to a Pandas DataFrame
|
38 |
+
df = pd.DataFrame([item.dict().values()], columns=item.dict().keys())
|
39 |
+
|
40 |
+
# Encode categorical features
|
41 |
+
encoded_features = encoder.transform(df[categorical_features])
|
42 |
+
|
43 |
+
# Get the feature names from the encoder
|
44 |
+
feature_names = encoder.get_feature_names_out(input_features=categorical_features)
|
45 |
+
|
46 |
+
# Create a DataFrame with the encoded features and feature names
|
47 |
+
encoded_df = pd.DataFrame(encoded_features, columns=feature_names)
|
48 |
+
df_encoded = pd.concat([df.drop(columns=categorical_features), encoded_df], axis=1)
|
49 |
+
|
50 |
+
# Make probability predictions using the LightGBM model
|
51 |
+
pred_proba = model.predict_proba(df_encoded)
|
52 |
+
|
53 |
+
# Assuming a binary classification problem, use probabilities for the positive class
|
54 |
+
positive_class_probability = pred_proba[:, 1]
|
55 |
+
|
56 |
+
# Prepare the response with SHAP values
|
57 |
+
response = {
|
58 |
+
"Probability of getting stroke is: ": positive_class_probability[0],
|
59 |
+
}
|
60 |
+
|
61 |
+
return response
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
# Handle exceptions and return an HTTP 500 error
|
65 |
+
raise HTTPException(status_code=500, detail=str(e))
|
Stroke_prediction_data_preprocess&Modeling/Stroke_Prediction/requirements.txt
ADDED
Binary file (3.49 kB). View file
|
|