Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import joblib
|
4 |
+
from enum import Enum
|
5 |
+
from pydantic import BaseModel, Field, confloat, constr, conlist, ValidationError
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
# Load the model
|
9 |
+
model = joblib.load('lgb_model_main.joblib')
|
10 |
+
|
11 |
+
categorical_features = [
|
12 |
+
'NAME_CONTRACT_TYPE',
|
13 |
+
'CODE_GENDER',
|
14 |
+
'NAME_INCOME_TYPE',
|
15 |
+
'NAME_EDUCATION_TYPE',
|
16 |
+
'NAME_FAMILY_STATUS',
|
17 |
+
'OCCUPATION_TYPE',
|
18 |
+
'ORGANIZATION_TYPE',
|
19 |
+
]
|
20 |
+
|
21 |
+
class ContractType(str, Enum):
|
22 |
+
Cash_loans = "Cash loans"
|
23 |
+
Revolving_loans = "Revolving loans"
|
24 |
+
|
25 |
+
class Gender(str, Enum):
|
26 |
+
Male = "M"
|
27 |
+
Female = "F"
|
28 |
+
XNA = "XNA"
|
29 |
+
|
30 |
+
class IncomeType(str, Enum):
|
31 |
+
Working = "Working"
|
32 |
+
Other = "Other"
|
33 |
+
Commercial_associate = "Commercial associate"
|
34 |
+
Pensioner = "Pensioner"
|
35 |
+
|
36 |
+
class EducationType(str, Enum):
|
37 |
+
Other = "Other"
|
38 |
+
Higher_education = "Higher education"
|
39 |
+
Secondary = "Secondary / secondary special"
|
40 |
+
|
41 |
+
class FamilyStatus(str, Enum):
|
42 |
+
Civil_marriage = "Civil marriage"
|
43 |
+
Married = "Married"
|
44 |
+
Single = "Single / not married"
|
45 |
+
Other = "Other"
|
46 |
+
|
47 |
+
class OccupationType(str, Enum):
|
48 |
+
Laborers = "Laborers"
|
49 |
+
Sales_staff = "Sales staff"
|
50 |
+
Core_staff = "Core staff"
|
51 |
+
Managers = "Managers"
|
52 |
+
Drivers = "Drivers"
|
53 |
+
Other = "Other"
|
54 |
+
|
55 |
+
class OrganizationType(str, Enum):
|
56 |
+
Business_Entity = "Business Entity Type 3"
|
57 |
+
Other = "Other"
|
58 |
+
XNA = "XNA"
|
59 |
+
Self_employed = "Self-employed"
|
60 |
+
|
61 |
+
class PredictionInput(BaseModel):
|
62 |
+
AMT_INCOME_TOTAL: confloat(ge=0)
|
63 |
+
AMT_CREDIT: confloat(ge=0)
|
64 |
+
REGION_POPULATION_RELATIVE: confloat(ge=0)
|
65 |
+
DAYS_REGISTRATION: int
|
66 |
+
DAYS_BIRTH: int
|
67 |
+
DAYS_ID_PUBLISH: int
|
68 |
+
FLAG_WORK_PHONE: int
|
69 |
+
FLAG_PHONE: int
|
70 |
+
REGION_RATING_CLIENT_W_CITY: int
|
71 |
+
REG_CITY_NOT_WORK_CITY: int
|
72 |
+
FLAG_DOCUMENT_3: int
|
73 |
+
NAME_CONTRACT_TYPE: ContractType
|
74 |
+
CODE_GENDER: Gender
|
75 |
+
FLAG_OWN_CAR: int
|
76 |
+
NAME_INCOME_TYPE: IncomeType
|
77 |
+
NAME_EDUCATION_TYPE: EducationType
|
78 |
+
NAME_FAMILY_STATUS: FamilyStatus
|
79 |
+
OCCUPATION_TYPE: OccupationType
|
80 |
+
ORGANIZATION_TYPE: OrganizationType
|
81 |
+
CREDIT_ACTIVE_Active_count_Bureau: Optional[int] = None
|
82 |
+
CREDIT_ACTIVE_Closed_count_Bureau: Optional[int] = None
|
83 |
+
DAYS_CREDIT_Bureau: Optional[int] = None
|
84 |
+
AMT_INSTALMENT_mean_HCredit_installments: Optional[int] = None
|
85 |
+
DAYS_INSTALMENT_mean_HCredit_installments: Optional[int] = None
|
86 |
+
NUM_INSTALMENT_NUMBER_mean_HCredit_installments: Optional[int] = None
|
87 |
+
NUM_INSTALMENT_VERSION_mean_HCredit_installments: Optional[int] = None
|
88 |
+
NAME_CONTRACT_STATUS_Active_count_pos_cash: Optional[int] = None
|
89 |
+
NAME_CONTRACT_STATUS_Completed_count_pos_cash: Optional[int] = None
|
90 |
+
SK_DPD_DEF_pos_cash: Optional[int] = None
|
91 |
+
NAME_CONTRACT_STATUS_Refused_count_HCredit_PApp: Optional[int] = None
|
92 |
+
NAME_GOODS_CATEGORY_Other_count_HCredit_PApp: Optional[int] = None
|
93 |
+
NAME_PORTFOLIO_Cash_count_HCredit_PApp: Optional[int] = None
|
94 |
+
NAME_PRODUCT_TYPE_walk_in_count_HCredit_PApp: Optional[int] = None
|
95 |
+
NAME_SELLER_INDUSTRY_Other_count_HCredit_PApp: Optional[int] = None
|
96 |
+
NAME_YIELD_GROUP_high_count_HCredit_PApp: Optional[int] = None
|
97 |
+
NAME_YIELD_GROUP_low_action_count_HCredit_PApp: Optional[int] = None
|
98 |
+
AMT_CREDIT_HCredit_PApp: Optional[int] = None
|
99 |
+
SELLERPLACE_AREA_HCredit_PApp: Optional[int] = None
|
100 |
+
|
101 |
+
def make_prediction(input_data: dict):
|
102 |
+
try:
|
103 |
+
# Convert dictionary to a pandas DataFrame
|
104 |
+
input_df = pd.DataFrame([input_data])
|
105 |
+
|
106 |
+
# Convert categorical features to 'category' type
|
107 |
+
for feature in categorical_features:
|
108 |
+
input_df[feature] = input_df[feature].astype('category')
|
109 |
+
|
110 |
+
# Make predictions using the loaded model
|
111 |
+
predictions = model.predict_proba(input_df, categorical_feature=categorical_features)[:, 1]
|
112 |
+
|
113 |
+
# Placeholder response for demonstration
|
114 |
+
response = {"Probability for this credit to be defaulted is: ": predictions[0]} # Extract the probability for class 1
|
115 |
+
|
116 |
+
return response
|
117 |
+
except Exception as e:
|
118 |
+
return {"error": str(e)}
|
119 |
+
|
120 |
+
def main():
|
121 |
+
st.title("Credit Default Prediction")
|
122 |
+
|
123 |
+
st.header("Input Data")
|
124 |
+
with st.form(key='input_form'):
|
125 |
+
AMT_INCOME_TOTAL = st.number_input("AMT_INCOME_TOTAL", min_value=0.0, format="%f")
|
126 |
+
AMT_CREDIT = st.number_input("AMT_CREDIT", min_value=0.0, format="%f")
|
127 |
+
REGION_POPULATION_RELATIVE = st.number_input("REGION_POPULATION_RELATIVE", min_value=0.0, format="%f")
|
128 |
+
DAYS_REGISTRATION = st.number_input("DAYS_REGISTRATION", min_value=-100000, max_value=100000, format="%d")
|
129 |
+
DAYS_BIRTH = st.number_input("DAYS_BIRTH", min_value=-100000, max_value=100000, format="%d")
|
130 |
+
DAYS_ID_PUBLISH = st.number_input("DAYS_ID_PUBLISH", min_value=-100000, max_value=100000, format="%d")
|
131 |
+
FLAG_WORK_PHONE = st.number_input("FLAG_WORK_PHONE", min_value=0, max_value=1, format="%d")
|
132 |
+
FLAG_PHONE = st.number_input("FLAG_PHONE", min_value=0, max_value=1, format="%d")
|
133 |
+
REGION_RATING_CLIENT_W_CITY = st.number_input("REGION_RATING_CLIENT_W_CITY", min_value=0, max_value=10, format="%d")
|
134 |
+
REG_CITY_NOT_WORK_CITY = st.number_input("REG_CITY_NOT_WORK_CITY", min_value=0, max_value=1, format="%d")
|
135 |
+
FLAG_DOCUMENT_3 = st.number_input("FLAG_DOCUMENT_3", min_value=0, max_value=1, format="%d")
|
136 |
+
NAME_CONTRACT_TYPE = st.selectbox("NAME_CONTRACT_TYPE", list(ContractType))
|
137 |
+
CODE_GENDER = st.selectbox("CODE_GENDER", list(Gender))
|
138 |
+
FLAG_OWN_CAR = st.number_input("FLAG_OWN_CAR", min_value=0, max_value=1, format="%d")
|
139 |
+
NAME_INCOME_TYPE = st.selectbox("NAME_INCOME_TYPE", list(IncomeType))
|
140 |
+
NAME_EDUCATION_TYPE = st.selectbox("NAME_EDUCATION_TYPE", list(EducationType))
|
141 |
+
NAME_FAMILY_STATUS = st.selectbox("NAME_FAMILY_STATUS", list(FamilyStatus))
|
142 |
+
OCCUPATION_TYPE = st.selectbox("OCCUPATION_TYPE", list(OccupationType))
|
143 |
+
ORGANIZATION_TYPE = st.selectbox("ORGANIZATION_TYPE", list(OrganizationType))
|
144 |
+
|
145 |
+
CREDIT_ACTIVE_Active_count_Bureau = st.number_input("CREDIT_ACTIVE_Active_count_Bureau", min_value=0, format="%d", value=0)
|
146 |
+
CREDIT_ACTIVE_Closed_count_Bureau = st.number_input("CREDIT_ACTIVE_Closed_count_Bureau", min_value=0, format="%d", value=0)
|
147 |
+
DAYS_CREDIT_Bureau = st.number_input("DAYS_CREDIT_Bureau", min_value=-100000, max_value=100000, format="%d", value=0)
|
148 |
+
AMT_INSTALMENT_mean_HCredit_installments = st.number_input("AMT_INSTALMENT_mean_HCredit_installments", min_value=0, format="%f", value=0.0)
|
149 |
+
DAYS_INSTALMENT_mean_HCredit_installments = st.number_input("DAYS_INSTALMENT_mean_HCredit_installments", min_value=-100000, max_value=100000, format="%d", value=0)
|
150 |
+
NUM_INSTALMENT_NUMBER_mean_HCredit_installments = st.number_input("NUM_INSTALMENT_NUMBER_mean_HCredit_installments", min_value=0, format="%d", value=0)
|
151 |
+
NUM_INSTALMENT_VERSION_mean_HCredit_installments = st.number_input("NUM_INSTALMENT_VERSION_mean_HCredit_installments", min_value=0, format="%d", value=0)
|
152 |
+
NAME_CONTRACT_STATUS_Active_count_pos_cash = st.number_input("NAME_CONTRACT_STATUS_Active_count_pos_cash", min_value=0, format="%d", value=0)
|
153 |
+
NAME_CONTRACT_STATUS_Completed_count_pos_cash = st.number_input("NAME_CONTRACT_STATUS_Completed_count_pos_cash", min_value=0, format="%d", value=0)
|
154 |
+
SK_DPD_DEF_pos_cash = st.number_input("SK_DPD_DEF_pos_cash", min_value=0, format="%d", value=0)
|
155 |
+
NAME_CONTRACT_STATUS_Refused_count_HCredit_PApp = st.number_input("NAME_CONTRACT_STATUS_Refused_count_HCredit_PApp", min_value=0, format="%d", value=0)
|
156 |
+
NAME_GOODS_CATEGORY_Other_count_HCredit_PApp = st.number_input("NAME_GOODS_CATEGORY_Other_count_HCredit_PApp", min_value=0, format="%d", value=0)
|
157 |
+
NAME_PORTFOLIO_Cash_count_HCredit_PApp = st.number_input("NAME_PORTFOLIO_Cash_count_HCredit_PApp", min_value=0, format="%d", value=0)
|
158 |
+
NAME_PRODUCT_TYPE_walk_in_count_HCredit_PApp = st.number_input("NAME_PRODUCT_TYPE_walk_in_count_HCredit_PApp", min_value=0, format="%d", value=0)
|
159 |
+
NAME_SELLER_INDUSTRY_Other_count_HCredit_PApp = st.number_input("NAME_SELLER_INDUSTRY_Other_count_HCredit_PApp", min_value=0, format="%d", value=0)
|
160 |
+
NAME_YIELD_GROUP_high_count_HCredit_PApp = st.number_input("NAME_YIELD_GROUP_high_count_HCredit_PApp", min_value=0, format="%d", value=0)
|
161 |
+
NAME_YIELD_GROUP_low_action_count_HCredit_PApp = st.number_input("NAME_YIELD_GROUP_low_action_count_HCredit_PApp", min_value=0, format="%d", value=0)
|
162 |
+
AMT_CREDIT_HCredit_PApp = st.number_input("AMT_CREDIT_HCredit_PApp", min_value=0, format="%f", value=0.0)
|
163 |
+
SELLERPLACE_AREA_HCredit_PApp = st.number_input("SELLERPLACE_AREA_HCredit_PApp", min_value=0, format="%d", value=0)
|
164 |
+
|
165 |
+
submit_button = st.form_submit_button(label='Predict')
|
166 |
+
|
167 |
+
if submit_button:
|
168 |
+
input_data = {
|
169 |
+
"AMT_INCOME_TOTAL": AMT_INCOME_TOTAL,
|
170 |
+
"AMT_CREDIT": AMT_CREDIT,
|
171 |
+
"REGION_POPULATION_RELATIVE": REGION_POPULATION_RELATIVE,
|
172 |
+
"DAYS_REGISTRATION": DAYS_REGISTRATION,
|
173 |
+
"DAYS_BIRTH": DAYS_BIRTH,
|
174 |
+
"DAYS_ID_PUBLISH": DAYS_ID_PUBLISH,
|
175 |
+
"FLAG_WORK_PHONE": FLAG_WORK_PHONE,
|
176 |
+
"FLAG_PHONE": FLAG_PHONE,
|
177 |
+
"REGION_RATING_CLIENT_W_CITY": REGION_RATING_CLIENT_W_CITY,
|
178 |
+
"REG_CITY_NOT_WORK_CITY": REG_CITY_NOT_WORK_CITY,
|
179 |
+
"FLAG_DOCUMENT_3": FLAG_DOCUMENT_3,
|
180 |
+
"NAME_CONTRACT_TYPE": NAME_CONTRACT_TYPE,
|
181 |
+
"CODE_GENDER": CODE_GENDER,
|
182 |
+
"FLAG_OWN_CAR": FLAG_OWN_CAR,
|
183 |
+
"NAME_INCOME_TYPE": NAME_INCOME_TYPE,
|
184 |
+
"NAME_EDUCATION_TYPE": NAME_EDUCATION_TYPE,
|
185 |
+
"NAME_FAMILY_STATUS": NAME_FAMILY_STATUS,
|
186 |
+
"OCCUPATION_TYPE": OCCUPATION_TYPE,
|
187 |
+
"ORGANIZATION_TYPE": ORGANIZATION_TYPE,
|
188 |
+
"CREDIT_ACTIVE_Active_count_Bureau": CREDIT_ACTIVE_Active_count_Bureau,
|
189 |
+
"CREDIT_ACTIVE_Closed_count_Bureau": CREDIT_ACTIVE_Closed_count_Bureau,
|
190 |
+
"DAYS_CREDIT_Bureau": DAYS_CREDIT_Bureau,
|
191 |
+
"AMT_INSTALMENT_mean_HCredit_installments": AMT_INSTALMENT_mean_HCredit_installments,
|
192 |
+
"DAYS_INSTALMENT_mean_HCredit_installments": DAYS_INSTALMENT_mean_HCredit_installments,
|
193 |
+
"NUM_INSTALMENT_NUMBER_mean_HCredit_installments": NUM_INSTALMENT_NUMBER_mean_HCredit_installments,
|
194 |
+
"NUM_INSTALMENT_VERSION_mean_HCredit_installments": NUM_INSTALMENT_VERSION_mean_HCredit_installments,
|
195 |
+
"NAME_CONTRACT_STATUS_Active_count_pos_cash": NAME_CONTRACT_STATUS_Active_count_pos_cash,
|
196 |
+
"NAME_CONTRACT_STATUS_Completed_count_pos_cash": NAME_CONTRACT_STATUS_Completed_count_pos_cash,
|
197 |
+
"SK_DPD_DEF_pos_cash": SK_DPD_DEF_pos_cash,
|
198 |
+
"NAME_CONTRACT_STATUS_Refused_count_HCredit_PApp": NAME_CONTRACT_STATUS_Refused_count_HCredit_PApp,
|
199 |
+
"NAME_GOODS_CATEGORY_Other_count_HCredit_PApp": NAME_GOODS_CATEGORY_Other_count_HCredit_PApp,
|
200 |
+
"NAME_PORTFOLIO_Cash_count_HCredit_PApp": NAME_PORTFOLIO_Cash_count_HCredit_PApp,
|
201 |
+
"NAME_PRODUCT_TYPE_walk_in_count_HCredit_PApp": NAME_PRODUCT_TYPE_walk_in_count_HCredit_PApp,
|
202 |
+
"NAME_SELLER_INDUSTRY_Other_count_HCredit_PApp": NAME_SELLER_INDUSTRY_Other_count_HCredit_PApp,
|
203 |
+
"NAME_YIELD_GROUP_high_count_HCredit_PApp": NAME_YIELD_GROUP_high_count_HCredit_PApp,
|
204 |
+
"NAME_YIELD_GROUP_low_action_count_HCredit_PApp": NAME_YIELD_GROUP_low_action_count_HCredit_PApp,
|
205 |
+
"AMT_CREDIT_HCredit_PApp": AMT_CREDIT_HCredit_PApp,
|
206 |
+
"SELLERPLACE_AREA_HCredit_PApp": SELLERPLACE_AREA_HCredit_PApp
|
207 |
+
}
|
208 |
+
|
209 |
+
try:
|
210 |
+
input_data_validated = PredictionInput(**input_data)
|
211 |
+
prediction = make_prediction(input_data_validated.dict())
|
212 |
+
st.write(prediction)
|
213 |
+
except ValidationError as e:
|
214 |
+
st.error(f"Validation error: {e}")
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
main()
|