File size: 1,310 Bytes
f0e8cfd
 
 
3ebab61
f0e8cfd
880159c
3ebab61
 
290179a
3b29101
2003369
f0e8cfd
880159c
9df41bd
f0e8cfd
880159c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0e8cfd
95c1831
f0e8cfd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from langchain_nvidia_ai_endpoints import ChatNVIDIA
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
import gradio as gr
import os
from smolagents import HfApiModel


prompt = ChatPromptTemplate.from_messages([("system", "You are a helpful AI assistant named Arun."), ("user", "{input}")])

llm = ChatNVIDIA(model="mistralai/mixtral-8x7b-instruct-v0.1")
chain = prompt | llm | StrOutputParser()
model = HfApiModel(model_id="mistralai/Mixtral-8x7B-Instruct-v0.1", token=os.environ.get("HF_TOKEN"))

def chat(prompt, history):
    data = [
        {
            "role":"system",
            "content":[
                {
                    "type":"text",
                    "text": "You are a doctor who specializes on helping patients with addiction issues"
                }
            ]
        },
        {
            "role":"user",
            "content":[
                {
                    "type":"text",
                    "text": prompt
                }
            ]
        }
    ]
    
    return model(data).content

demo = gr.ChatInterface(chat, title="ArunGPT",theme = gr.themes.Soft(), description="Hello this is chatbot is created for only educational purpose and is powered by mistral 8x 7b model").queue()

demo.launch()