Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import json | |
import fitz # PyMuPDF | |
from fpdf import FPDF | |
import os | |
import tempfile | |
import base64 | |
import dotenv | |
from dotenv import load_dotenv | |
import torch | |
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer | |
from torch.nn.functional import softmax | |
from doctr.models import ocr_predictor | |
from doctr.io import DocumentFile | |
import tempfile | |
def save_uploaded_file(uploaded_file): | |
if uploaded_file is not None: | |
file_extension = uploaded_file.name.split('.')[-1].lower() | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix = f'.{file_extension}') | |
temp_file.write(uploaded_file.getvalue()) | |
temp_file.close() | |
return temp_file.name | |
return None | |
load_dotenv() | |
model = DistilBertForSequenceClassification.from_pretrained('./fine_tuned_distilbert') | |
tokenizer = DistilBertTokenizer.from_pretrained('./fine_tuned_distilbert') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
mapping = {"Remembering": 0, "Understanding": 1, "Applying": 2, "Analyzing": 3, "Evaluating": 4, "Creating": 5} | |
reverse_mapping = {v: k for k, v in mapping.items()} | |
modelocr = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True) | |
# Previous functions from Question Generator | |
def get_pdf_path(pdf_source=None, uploaded_file=None): | |
try: | |
# If a file is uploaded locally | |
if uploaded_file is not None: | |
# Create a temporary file to save the uploaded PDF | |
temp_dir = tempfile.mkdtemp() | |
pdf_path = os.path.join(temp_dir, uploaded_file.name) | |
# Save the uploaded file | |
with open(pdf_path, "wb") as pdf_file: | |
pdf_file.write(uploaded_file.getvalue()) | |
return pdf_path | |
# If a URL is provided | |
if pdf_source: | |
response = requests.get(pdf_source, timeout=30) | |
response.raise_for_status() | |
# Create a temporary file | |
temp_dir = tempfile.mkdtemp() | |
pdf_path = os.path.join(temp_dir, "downloaded.pdf") | |
with open(pdf_path, "wb") as pdf_file: | |
pdf_file.write(response.content) | |
return pdf_path | |
# If no source is provided | |
st.error("No PDF source provided.") | |
return None | |
except Exception as e: | |
st.error(f"Error getting PDF: {e}") | |
return None | |
def extract_text_pymupdf(pdf_path): | |
try: | |
doc = fitz.open(pdf_path) | |
pages_content = [] | |
for page_num in range(len(doc)): | |
page = doc[page_num] | |
pages_content.append(page.get_text()) | |
doc.close() | |
return " ".join(pages_content) # Join all pages into one large context string | |
except Exception as e: | |
st.error(f"Error extracting text from PDF: {e}") | |
return "" | |
def generate_ai_response(api_key, assistant_context, user_query, role_description, response_instructions, bloom_taxonomy_weights, num_questions): | |
try: | |
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={api_key}" | |
prompt = f""" | |
You are a highly knowledgeable assistant. Your task is to assist the user with the following context from an academic paper. | |
**Role**: {role_description} | |
**Context**: {assistant_context} | |
**Instructions**: {response_instructions} | |
**Bloom's Taxonomy Weights**: | |
Knowledge: {bloom_taxonomy_weights['Knowledge']}% | |
Comprehension: {bloom_taxonomy_weights['Comprehension']}% | |
Application: {bloom_taxonomy_weights['Application']}% | |
Analysis: {bloom_taxonomy_weights['Analysis']}% | |
Synthesis: {bloom_taxonomy_weights['Synthesis']}% | |
Evaluation: {bloom_taxonomy_weights['Evaluation']}% | |
**Query**: {user_query} | |
**Number of Questions**: {num_questions} | |
""" | |
payload = { | |
"contents": [ | |
{ | |
"parts": [ | |
{"text": prompt} | |
] | |
} | |
] | |
} | |
headers = {"Content-Type": "application/json"} | |
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60) | |
response.raise_for_status() | |
result = response.json() | |
questions = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "") | |
questions_list = [question.strip() for question in questions.split("\n") if question.strip()] | |
return questions_list | |
except requests.RequestException as e: | |
st.error(f"API request error: {e}") | |
return [] | |
except Exception as e: | |
st.error(f"Error generating questions: {e}") | |
return [] | |
def normalize_bloom_weights(bloom_weights): | |
total = sum(bloom_weights.values()) | |
if total != 100: | |
normalization_factor = 100 / total | |
# Normalize each weight by multiplying it by the normalization factor | |
bloom_weights = {key: round(value * normalization_factor, 2) for key, value in bloom_weights.items()} | |
return bloom_weights | |
def generate_pdf(questions, filename="questions.pdf"): | |
try: | |
pdf = FPDF() | |
pdf.set_auto_page_break(auto=True, margin=15) | |
pdf.add_page() | |
# Set font | |
pdf.set_font("Arial", size=12) | |
# Add a title or heading | |
pdf.cell(200, 10, txt="Generated Questions", ln=True, align="C") | |
# Add space between title and questions | |
pdf.ln(10) | |
# Loop through questions and add them to the PDF | |
for i, question in enumerate(questions, 1): | |
# Using multi_cell for wrapping the text in case it's too long | |
pdf.multi_cell(0, 10, f"Q{i}: {question}") | |
# Save the generated PDF to the file | |
pdf.output(filename) | |
return filename | |
except Exception as e: | |
st.error(f"Error generating PDF: {e}") | |
return None | |
def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_description, response_instructions, bloom_taxonomy_weights, num_questions): | |
try: | |
# Get PDF path (either from URL or uploaded file) | |
pdf_path = get_pdf_path(pdf_source, uploaded_file) | |
if not pdf_path: | |
return [] | |
# Extract text | |
pdf_text = extract_text_pymupdf(pdf_path) | |
if not pdf_text: | |
return [] | |
# Generate questions | |
assistant_context = pdf_text | |
user_query = "Generate questions based on the above context." | |
normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights) | |
questions = generate_ai_response( | |
api_key, | |
assistant_context, | |
user_query, | |
role_description, | |
response_instructions, | |
normalized_bloom_weights, | |
num_questions | |
) | |
# Clean up temporary PDF file | |
try: | |
os.remove(pdf_path) | |
# Remove the temporary directory | |
os.rmdir(os.path.dirname(pdf_path)) | |
except Exception as e: | |
st.warning(f"Could not delete temporary PDF file: {e}") | |
return questions | |
except Exception as e: | |
st.error(f"Error processing PDF and generating questions: {e}") | |
return [] | |
def main(): | |
st.set_page_config(page_title="Academic Paper Tool", page_icon="📝", layout="wide") | |
# Tabs for different functionalities | |
st.markdown(""" | |
<style> | |
.stTabs [data-baseweb="tab"] { | |
margin-bottom: 1rem; | |
flex: 1; | |
justify-content: center; | |
} | |
.stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p { | |
font-size:2rem; | |
padding: 0 2rem; | |
margin: 0; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
tab1, tab2 = st.tabs(["Question Generator", "Paper Scorer"]) | |
if 'totalscore' not in st.session_state: | |
st.session_state.totalscore = None | |
if 'show_details' not in st.session_state: | |
st.session_state.show_details = False | |
# Question Generator Tab | |
with tab1: | |
st.title("🎓 Academic Paper Question Generator") | |
st.markdown("Generate insightful questions from academic papers using Bloom's Taxonomy") | |
# Initialize session state variables with defaults | |
if 'pdf_source_type' not in st.session_state: | |
st.session_state.pdf_source_type = "URL" | |
if 'pdf_url' not in st.session_state: | |
st.session_state.pdf_url = "https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf" | |
if 'uploaded_file' not in st.session_state: | |
st.session_state.uploaded_file = None | |
if 'questions' not in st.session_state: | |
st.session_state.questions = [] | |
if 'accepted_questions' not in st.session_state: | |
st.session_state.accepted_questions = [] | |
# API Configuration | |
api_key = os.getenv('GEMINI_API_KEY') | |
# api_key = st.sidebar.text_input("Enter Gemini API Key", type="password", value=apivalue) | |
# Main form for PDF and question generation | |
with st.form(key='pdf_generation_form'): | |
st.header("PDF Source Configuration") | |
st.session_state.pdf_url = st.text_input( | |
"Enter the URL of the PDF", | |
value=st.session_state.pdf_url, | |
key="pdf_url_input" | |
) | |
st.markdown("<h3 style='text-align: center;'>OR</h3>", unsafe_allow_html=True) | |
st.session_state.uploaded_file = st.file_uploader( | |
"Upload a PDF file", | |
type=['pdf'], | |
key="pdf_file_upload" | |
) | |
# Bloom's Taxonomy Weights | |
st.subheader("Adjust Bloom's Taxonomy Weights") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
knowledge = st.slider("Knowledge or Remembering: Remembering information", 0, 100, 20, key='knowledge_slider') | |
application = st.slider("Application: Use knowledge in new situations or solve problems.", 0, 100, 20, key='application_slider') | |
with col2: | |
comprehension = st.slider("Comprehension or Understanding: Comprehend and explain ideas or concepts.", 0, 100, 20, key='comprehension_slider') | |
analysis = st.slider("Analysis: Breaking down a whole into component parts", 0, 100, 20, key='analysis_slider') | |
with col3: | |
synthesis = st.slider("Synthesis or Creating: Putting parts together to form a new and integrated whole", 0, 100, 10, key='synthesis_slider') | |
evaluation = st.slider("Evaluation: Making and defending judgments based on internal evidence or external criteria", 0, 100, 10, key='evaluation_slider') | |
# Collect the Bloom's Taxonomy weights | |
bloom_taxonomy_weights = { | |
"Knowledge": knowledge, | |
"Comprehension": comprehension, | |
"Application": application, | |
"Analysis": analysis, | |
"Synthesis": synthesis, | |
"Evaluation": evaluation | |
} | |
# Number of questions | |
num_questions = st.slider("How many questions would you like to generate?", min_value=1, max_value=20, value=5, key='num_questions_slider') | |
# Submit button within the form | |
submit_button = st.form_submit_button(label='Generate Questions') | |
# Process form submission | |
if submit_button: | |
# Validate API key | |
if not api_key: | |
st.error("Please enter a valid Gemini API key.") | |
# Validate PDF source | |
elif not st.session_state.pdf_url and not st.session_state.uploaded_file: | |
st.error("Please enter a PDF URL or upload a PDF file.") | |
else: | |
# Normalize the Bloom's weights | |
normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights) | |
st.info("Normalized Bloom's Taxonomy Weights:") | |
st.json(normalized_bloom_weights) | |
# Role and instructions for the AI | |
role_description = "You are a question-generating AI agent, given context and instruction, you need to generate questions from the context." | |
response_instructions = "Please generate questions that are clear and relevant to the content of the paper. Generate questions which are separated by new lines, without any numbering or additional context." | |
# Generate questions | |
with st.spinner('Generating questions...'): | |
st.session_state.questions = process_pdf_and_generate_questions( | |
pdf_source=st.session_state.pdf_url if st.session_state.pdf_url else None, | |
uploaded_file=st.session_state.uploaded_file if st.session_state.uploaded_file else None, | |
api_key=api_key, | |
role_description=role_description, | |
response_instructions=response_instructions, | |
bloom_taxonomy_weights=normalized_bloom_weights, | |
num_questions=num_questions | |
) | |
if st.session_state.questions: | |
st.header("Generated Questions") | |
# Create a form for question management to prevent reload | |
with st.form(key='questions_form'): | |
for idx, question in enumerate(st.session_state.questions, 1): | |
cols = st.columns([4, 1]) # Create two columns for radio buttons (Accept, Discard) | |
with cols[0]: | |
st.write(f"Q{idx}: {question}") | |
# Use radio buttons for selection | |
with cols[1]: | |
# Default value is 'Discard', so users can change it to 'Accept' | |
selected_option = st.radio(f"Select an option for Q{idx}", ["Accept", "Discard"], key=f"radio_{idx}", index=1) | |
# Handle radio button state changes | |
if selected_option == "Accept": | |
# Add to accepted questions if 'Accept' is selected | |
if question not in st.session_state.accepted_questions: | |
st.session_state.accepted_questions.append(question) | |
else: | |
# Remove from accepted questions if 'Discard' is selected | |
if question in st.session_state.accepted_questions: | |
st.session_state.accepted_questions.remove(question) | |
# Submit button for question selection | |
submit_questions = st.form_submit_button("Update Accepted Questions") | |
# Show accepted questions | |
if st.session_state.accepted_questions: | |
st.header("Accepted Questions") | |
for q in st.session_state.accepted_questions: | |
st.write(q) | |
# Download button for accepted questions | |
if st.button("Download Accepted Questions as PDF"): | |
filename = generate_pdf(st.session_state.accepted_questions, filename="accepted_questions.pdf") | |
if filename: | |
with open(filename, "rb") as pdf_file: | |
st.download_button( | |
label="Click to Download PDF", | |
data=pdf_file, | |
file_name="accepted_questions.pdf", | |
mime="application/pdf" | |
) | |
st.success("PDF generated successfully!") | |
else: | |
st.info("No questions selected yet.") | |
# Add some footer information | |
st.markdown("---") | |
st.markdown(""" | |
### About this Tool | |
- Generate academic paper questions using Bloom's Taxonomy | |
- Customize question generation weights | |
- Select and refine generated questions | |
- Support for PDF via URL or local upload | |
""") | |
with tab2: | |
st.title("📄 Academic Paper Scorer") | |
# Add a descriptive subheader | |
st.markdown("### Evaluate the Quality of Your Academic Paper") | |
# Create a styled container for the upload section | |
st.markdown(""" | |
<style> | |
.upload-container { | |
background-color: #f0f2f6; | |
border-radius: 10px; | |
padding: 20px; | |
border: 2px dashed #4a6cf7; | |
text-align: center; | |
} | |
.score-breakdown { | |
background-color: #f8f9fa; | |
border-radius: 8px; | |
padding: 15px; | |
margin-bottom: 15px; | |
} | |
.score-header { | |
font-weight: bold; | |
color: #4a6cf7; | |
margin-bottom: 10px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
with st.form(key='paper_scorer_form'): | |
st.header("Upload Your Academic Paper") | |
uploaded_file = st.file_uploader( | |
"Choose a PDF file", | |
type=['pdf','jpg','png','jpeg'], | |
label_visibility="collapsed" | |
) | |
# Custom submit button with some styling | |
submit_button = st.form_submit_button( | |
"Score Paper", | |
use_container_width=True, | |
type="primary" | |
) | |
if submit_button: | |
# Calculate total score | |
pdf_path = save_uploaded_file(uploaded_file) | |
dummydata = sendtogemini(pdf_path) | |
#print(dummydata) | |
total_score = {'Remembering': 0, 'Understanding': 0, 'Applying': 0, 'Analyzing': 0, 'Evaluating': 0, 'Creating': 0} | |
for item in dummydata: | |
for category in total_score: | |
total_score[category] += item['score'][category] | |
# average_score = total_score / (len(dummydata) * 6 * 10) * 100 | |
# Score display columns | |
categories = ['Remembering', 'Understanding', 'Applying', 'Analyzing', 'Evaluating', 'Creating'] | |
# Create 6 columns in a single row | |
cols = st.columns(6) | |
# Iterate through categories and populate columns | |
for i, category in enumerate(categories): | |
with cols[i]: | |
score = round(total_score[category] / (len(dummydata) ),ndigits=3) | |
color = 'green' if score > .7 else 'orange' if score > .4 else 'red' | |
st.markdown(f""" | |
<div class="score-breakdown"> | |
<div class="score-header" style="color: {color}">{category}</div> | |
<div style="font-size: 24px; color: {color};">{score}/{len(dummydata)}</div> | |
</div> | |
""", unsafe_allow_html=True) | |
with st.expander("Show Detailed Scores", expanded=True): | |
for idx, item in enumerate(dummydata, 1): | |
# Question header | |
st.markdown(f'<div class="score-header">Question {idx}: {item["question"]}</div>', unsafe_allow_html=True) | |
# Create columns for score display | |
score_cols = st.columns(6) | |
# Scoring categories | |
categories = ['Remembering', 'Understanding', 'Applying', 'Analyzing', 'Evaluating', 'Creating'] | |
for col, category in zip(score_cols, categories): | |
with col: | |
# Determine color based on score | |
score = round(item['score'][category],ndigits=3) | |
color = 'green' if score > .7 else 'orange' if score > .4 else 'red' | |
st.markdown(f""" | |
<div style="text-align: center; | |
background-color: #f1f1f1; | |
border-radius: 5px; | |
padding: 5px; | |
margin-bottom: 5px;"> | |
<div style="font-weight: bold; color: {color};">{category}</div> | |
<div style="font-size: 18px; color: {color};">{score}/1</div> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Add a separator between questions | |
if idx < len(dummydata): | |
st.markdown('---') | |
def predict_with_loaded_model(text): | |
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512) | |
input_ids = inputs['input_ids'].to(device) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
logits = outputs.logits | |
probabilities = softmax(logits, dim=-1) | |
probabilities = probabilities.squeeze().cpu().numpy() | |
# Convert to float and format to 3 decimal places | |
class_probabilities = {reverse_mapping[i]: float(f"{prob:.3f}") for i, prob in enumerate(probabilities)} | |
return class_probabilities | |
# def process_document(input_path): | |
# return {'Avg_Confidence': 0.9397169561947093, 'String': ['What are the key differences between classification and regression tasks in', 'supervised learning, and how do you determine which algorithm to use for a', 'specific problem?', 'e How does clustering differ from dimensionality reduction, and can you', 'provide real-world examples of where each is applied?', 'What are common evaluation metrics for classification models, and how do', 'precision, recall, and F1-score relate to each other?', 'How do convolutional neural networks (CNNS) and recurrent neural networks', '(RNNS) differ in their architecture and applications?', 'What steps can be taken to identify and mitigate bias in machine learning', 'models, and why is this an important consideration?']} | |
def process_document(input_path): | |
if input_path.lower().endswith(".pdf"): | |
doc = DocumentFile.from_pdf(input_path) | |
#print(f"Number of pages: {len(doc)}") | |
elif input_path.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".tiff")): | |
doc = DocumentFile.from_images(input_path) | |
else: | |
raise ValueError("Unsupported file type. Please provide a PDF or an image file.") | |
result = modelocr(doc) | |
def calculate_average_confidence(result): | |
total_confidence = 0 | |
word_count = 0 | |
for page in result.pages: | |
for block in page.blocks: | |
for line in block.lines: | |
for word in line.words: | |
total_confidence += word.confidence | |
word_count += 1 | |
average_confidence = total_confidence / word_count if word_count > 0 else 0 | |
return average_confidence | |
average_confidence = calculate_average_confidence(result) | |
string_result = result.render() | |
return {'Avg_Confidence': average_confidence, 'String':string_result.split('\n')} | |
def sendtogemini(inputpath): | |
qw = process_document(inputpath) | |
questionset = str(qw['String']) | |
# send this prompt to gemini : | |
questionset += """You are given a list of text fragments containing questions fragments extracted by an ocr model. Your task is to: | |
# only Merge the question fragments into complete and coherent questions.Don't answer then. | |
# Separate each question , start a new question with @ to make them easily distinguishable for further processing.""" | |
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={os.getenv('GEMINI_API_KEY')}" | |
payload = { | |
"contents": [ | |
{ | |
"parts": [ | |
{"text": questionset} | |
] | |
} | |
] | |
} | |
headers = {"Content-Type": "application/json"} | |
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60) | |
result = response.json() | |
res1 = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "") | |
question = [] | |
for i in res1.split('\n'): | |
i = i.strip() | |
if len(i) > 0: | |
if i[0] == '@': | |
i = i[1:].strip().lower() | |
if i[0] == 'q': | |
question.append(i[1:].strip()) | |
else: | |
question.append(i) | |
data = [] | |
for i in question: | |
d = {} | |
d['question'] = i | |
d['score'] = predict_with_loaded_model(i) | |
data.append(d) | |
return data | |
# Run Streamlit app | |
if __name__ == "__main__": | |
main() |