Spaces:
Running
Running
Upload 2 files
Browse files- functionbloom.py +9 -4
- main.py +476 -0
functionbloom.py
CHANGED
@@ -106,7 +106,7 @@ def get_bloom_taxonomy_scores(question: str) -> Dict[str, float]:
|
|
106 |
return default_scores
|
107 |
|
108 |
|
109 |
-
def generate_ai_response(api_key, assistant_context, user_query, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals):
|
110 |
try:
|
111 |
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={api_key}"
|
112 |
|
@@ -123,6 +123,8 @@ def generate_ai_response(api_key, assistant_context, user_query, role_descriptio
|
|
123 |
**Role**: {role_description}
|
124 |
|
125 |
**Context**: {assistant_context}
|
|
|
|
|
126 |
|
127 |
**Instructions**: {response_instructions}
|
128 |
Question Length Requirement: {length_guidelines[question_length]}
|
@@ -221,7 +223,7 @@ def generate_pdf(questions, filename="questions.pdf"):
|
|
221 |
st.error(f"Error generating PDF: {e}")
|
222 |
return None
|
223 |
|
224 |
-
def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals):
|
225 |
try:
|
226 |
|
227 |
pdf_path = get_pdf_path(pdf_source, uploaded_file)
|
@@ -245,7 +247,8 @@ def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_
|
|
245 |
normalized_bloom_weights,
|
246 |
num_questions,
|
247 |
question_length,
|
248 |
-
include_numericals
|
|
|
249 |
)
|
250 |
|
251 |
# Clean up temporary PDF file
|
@@ -385,4 +388,6 @@ def sendtogemini(inputpath, question):
|
|
385 |
d['question'] = i
|
386 |
d['score'] = predict_with_loaded_model(i)
|
387 |
data.append(d)
|
388 |
-
return data
|
|
|
|
|
|
106 |
return default_scores
|
107 |
|
108 |
|
109 |
+
def generate_ai_response(api_key, assistant_context, user_query, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals, user_input):
|
110 |
try:
|
111 |
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={api_key}"
|
112 |
|
|
|
123 |
**Role**: {role_description}
|
124 |
|
125 |
**Context**: {assistant_context}
|
126 |
+
|
127 |
+
**User Query**: {user_input}
|
128 |
|
129 |
**Instructions**: {response_instructions}
|
130 |
Question Length Requirement: {length_guidelines[question_length]}
|
|
|
223 |
st.error(f"Error generating PDF: {e}")
|
224 |
return None
|
225 |
|
226 |
+
def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_description, response_instructions, bloom_taxonomy_weights, num_questions, question_length, include_numericals, user_input):
|
227 |
try:
|
228 |
|
229 |
pdf_path = get_pdf_path(pdf_source, uploaded_file)
|
|
|
247 |
normalized_bloom_weights,
|
248 |
num_questions,
|
249 |
question_length,
|
250 |
+
include_numericals,
|
251 |
+
user_input
|
252 |
)
|
253 |
|
254 |
# Clean up temporary PDF file
|
|
|
388 |
d['question'] = i
|
389 |
d['score'] = predict_with_loaded_model(i)
|
390 |
data.append(d)
|
391 |
+
return data
|
392 |
+
|
393 |
+
|
main.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Dict
|
2 |
+
import streamlit as st
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import torch
|
6 |
+
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
|
7 |
+
from torch.nn.functional import softmax
|
8 |
+
from doctr.models import ocr_predictor
|
9 |
+
from doctr.io import DocumentFile
|
10 |
+
from functionbloom import save_uploaded_file, get_pdf_path, extract_text_pymupdf, get_bloom_taxonomy_scores,generate_ai_response,normalize_bloom_weights, generate_pdf,process_pdf_and_generate_questions,get_bloom_taxonomy_details
|
11 |
+
from functionbloom import predict_with_loaded_model, process_document, sendtogemini
|
12 |
+
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
model = DistilBertForSequenceClassification.from_pretrained('./fine_tuned_distilbert')
|
17 |
+
tokenizer = DistilBertTokenizer.from_pretrained('./fine_tuned_distilbert')
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
model.to(device)
|
20 |
+
mapping = {"Remembering": 0, "Understanding": 1, "Applying": 2, "Analyzing": 3, "Evaluating": 4, "Creating": 5}
|
21 |
+
reverse_mapping = {v: k for k, v in mapping.items()}
|
22 |
+
modelocr = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True)
|
23 |
+
|
24 |
+
def main():
|
25 |
+
st.set_page_config(page_title="Academic Paper Tool", page_icon="📝", layout="wide")
|
26 |
+
|
27 |
+
# Tabs for different functionalities
|
28 |
+
st.markdown("""
|
29 |
+
<style>
|
30 |
+
.stTabs [data-baseweb="tab"] {
|
31 |
+
margin-bottom: 1rem;
|
32 |
+
flex: 1;
|
33 |
+
justify-content: center;
|
34 |
+
}
|
35 |
+
.stTabs [data-baseweb="tab-list"] button [data-testid="stMarkdownContainer"] p {
|
36 |
+
font-size: 2rem;
|
37 |
+
padding: 0 2rem;
|
38 |
+
font-weight: bold;
|
39 |
+
margin: 0;
|
40 |
+
}
|
41 |
+
|
42 |
+
/* Information Button Styling */
|
43 |
+
.info-button {
|
44 |
+
background-color: #f0f2f6;
|
45 |
+
border: 1px solid #4a6cf7;
|
46 |
+
border-radius: 50%;
|
47 |
+
width: 24px;
|
48 |
+
height: 24px;
|
49 |
+
display: inline-flex;
|
50 |
+
align-items: center;
|
51 |
+
justify-content: center;
|
52 |
+
cursor: pointer;
|
53 |
+
margin-left: 8px;
|
54 |
+
font-weight: bold;
|
55 |
+
color: #4a6cf7;
|
56 |
+
}
|
57 |
+
|
58 |
+
/* Modal Styling */
|
59 |
+
.modal {
|
60 |
+
display: none;
|
61 |
+
position: fixed;
|
62 |
+
z-index: 1000;
|
63 |
+
left: 0;
|
64 |
+
top: 0;
|
65 |
+
width: 100%;
|
66 |
+
height: 100%;
|
67 |
+
overflow: auto;
|
68 |
+
background-color: rgba(0,0,0,0.4);
|
69 |
+
}
|
70 |
+
|
71 |
+
.modal-content {
|
72 |
+
background-color: #fefefe;
|
73 |
+
margin: 15% auto;
|
74 |
+
padding: 20px;
|
75 |
+
border: 1px solid #888;
|
76 |
+
width: 80%;
|
77 |
+
max-width: 500px;
|
78 |
+
border-radius: 10px;
|
79 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
80 |
+
}
|
81 |
+
|
82 |
+
.close-button {
|
83 |
+
color: #aaa;
|
84 |
+
float: right;
|
85 |
+
font-size: 28px;
|
86 |
+
font-weight: bold;
|
87 |
+
cursor: pointer;
|
88 |
+
}
|
89 |
+
|
90 |
+
.close-button:hover,
|
91 |
+
.close-button:focus {
|
92 |
+
color: black;
|
93 |
+
text-decoration: none;
|
94 |
+
cursor: pointer;
|
95 |
+
}
|
96 |
+
|
97 |
+
/* Question Container Styling */
|
98 |
+
.question-container {
|
99 |
+
display: flex;
|
100 |
+
align-items: start;
|
101 |
+
gap: 10px;
|
102 |
+
margin-bottom: 10px;
|
103 |
+
}
|
104 |
+
|
105 |
+
/* Info Button Styling */
|
106 |
+
.info-button {
|
107 |
+
background-color: #f0f2f6;
|
108 |
+
border: 1px solid #4a6cf7;
|
109 |
+
border-radius: 50%;
|
110 |
+
width: 24px;
|
111 |
+
height: 24px;
|
112 |
+
display: inline-flex;
|
113 |
+
align-items: center;
|
114 |
+
justify-content: center;
|
115 |
+
cursor: pointer;
|
116 |
+
font-weight: bold;
|
117 |
+
color: #4a6cf7;
|
118 |
+
flex-shrink: 0;
|
119 |
+
font-size: 14px;
|
120 |
+
}
|
121 |
+
|
122 |
+
.info-button:hover {
|
123 |
+
background-color: #4a6cf7;
|
124 |
+
color: white;
|
125 |
+
}
|
126 |
+
|
127 |
+
/* Modal Styling */
|
128 |
+
.modal {
|
129 |
+
display: none;
|
130 |
+
position: fixed;
|
131 |
+
z-index: 9999;
|
132 |
+
left: 0;
|
133 |
+
top: 0;
|
134 |
+
width: 100%;
|
135 |
+
height: 100%;
|
136 |
+
background-color: rgba(0,0,0,0.4);
|
137 |
+
}
|
138 |
+
|
139 |
+
.modal-content {
|
140 |
+
background-color: #fefefe;
|
141 |
+
margin: 15% auto;
|
142 |
+
padding: 20px;
|
143 |
+
border: 1px solid #888;
|
144 |
+
width: 80%;
|
145 |
+
max-width: 500px;
|
146 |
+
border-radius: 10px;
|
147 |
+
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
|
148 |
+
position: relative;
|
149 |
+
}
|
150 |
+
|
151 |
+
.close-button {
|
152 |
+
position: absolute;
|
153 |
+
right: 10px;
|
154 |
+
top: 5px;
|
155 |
+
color: #aaa;
|
156 |
+
font-size: 28px;
|
157 |
+
font-weight: bold;
|
158 |
+
cursor: pointer;
|
159 |
+
}
|
160 |
+
|
161 |
+
.close-button:hover,
|
162 |
+
.close-button:focus {
|
163 |
+
color: black;
|
164 |
+
text-decoration: none;
|
165 |
+
cursor: pointer;
|
166 |
+
}
|
167 |
+
</style>
|
168 |
+
""", unsafe_allow_html=True)
|
169 |
+
|
170 |
+
tab1, tab2 = st.tabs(["Question Generator", "Paper Scorer"])
|
171 |
+
|
172 |
+
if 'totalscore' not in st.session_state:
|
173 |
+
st.session_state.totalscore = None
|
174 |
+
if 'show_details' not in st.session_state:
|
175 |
+
st.session_state.show_details = False
|
176 |
+
if 'question_scores' not in st.session_state:
|
177 |
+
st.session_state.question_scores = {}
|
178 |
+
|
179 |
+
# Question Generator Tab
|
180 |
+
with tab1:
|
181 |
+
st.markdown("<h1 style='font-size: 28px;'>🎓 Academic Paper Question Generator</h1>", unsafe_allow_html=True)
|
182 |
+
st.markdown("Generate insightful questions from academic papers using Bloom's Taxonomy")
|
183 |
+
|
184 |
+
# Initialize session state variables with defaults
|
185 |
+
if 'pdf_source_type' not in st.session_state:
|
186 |
+
st.session_state.pdf_source_type = "URL"
|
187 |
+
if 'pdf_url' not in st.session_state:
|
188 |
+
st.session_state.pdf_url = ""
|
189 |
+
if 'uploaded_file' not in st.session_state:
|
190 |
+
st.session_state.uploaded_file = None
|
191 |
+
if 'questions' not in st.session_state:
|
192 |
+
st.session_state.questions = []
|
193 |
+
if 'accepted_questions' not in st.session_state:
|
194 |
+
st.session_state.accepted_questions = []
|
195 |
+
|
196 |
+
# API Configuration
|
197 |
+
api_key = os.getenv('GEMINI_API_KEY')
|
198 |
+
|
199 |
+
# Main form for PDF and question generation
|
200 |
+
with st.form(key='pdf_generation_form'):
|
201 |
+
st.subheader("PDF Source")
|
202 |
+
|
203 |
+
st.session_state.pdf_url = st.text_input(
|
204 |
+
"Enter the URL of the PDF",
|
205 |
+
value=st.session_state.pdf_url,
|
206 |
+
key="pdf_url_input"
|
207 |
+
)
|
208 |
+
|
209 |
+
st.markdown("<h4 style='text-align: center;'>OR</h4>", unsafe_allow_html=True)
|
210 |
+
|
211 |
+
st.session_state.uploaded_file = st.file_uploader(
|
212 |
+
"Upload a PDF file",
|
213 |
+
type=['pdf'],
|
214 |
+
key="pdf_file_upload"
|
215 |
+
)
|
216 |
+
|
217 |
+
st.session_state.user_input=st.text_area("Enter your query here", key="input", height=100)
|
218 |
+
|
219 |
+
# Question Length Selection
|
220 |
+
question_length = st.select_slider(
|
221 |
+
"Select Question Length",
|
222 |
+
options=["Short", "Medium", "Long"],
|
223 |
+
value="Medium",
|
224 |
+
help="Short: 10-15 words, Medium: 20-25 words, Long: 30-40 words"
|
225 |
+
)
|
226 |
+
|
227 |
+
st.session_state.include_numericals = st.checkbox("Include Numericals", key="include_numericals_checkbox")
|
228 |
+
|
229 |
+
# Bloom's Taxonomy Weights
|
230 |
+
st.subheader("Adjust Bloom's Taxonomy Weights")
|
231 |
+
col1, col2, col3 = st.columns(3)
|
232 |
+
|
233 |
+
with col1:
|
234 |
+
knowledge = st.slider("Knowledge: Remembering", 0, 100, 20, key='knowledge_slider')
|
235 |
+
application = st.slider("Applying: Using abstractions in concrete situations", 0, 100, 20, key='application_slider')
|
236 |
+
|
237 |
+
with col2:
|
238 |
+
comprehension = st.slider("Understanding: Explaining the meaning of information", 0, 100, 20, key='comprehension_slider')
|
239 |
+
analysis = st.slider("Analyzing: Breaking down a whole into component parts", 0, 100, 20, key='analysis_slider')
|
240 |
+
|
241 |
+
with col3:
|
242 |
+
synthesis = st.slider("Creating: Putting parts together to form a new and integrated whole", 0, 100, 10, key='synthesis_slider')
|
243 |
+
evaluation = st.slider("Evaluation: Making and defending judgments based on internal evidence or external criteria", 0, 100, 10, key='evaluation_slider')
|
244 |
+
|
245 |
+
# Collect the Bloom's Taxonomy weights
|
246 |
+
bloom_taxonomy_weights = {
|
247 |
+
"Knowledge": knowledge,
|
248 |
+
"Comprehension": comprehension,
|
249 |
+
"Application": application,
|
250 |
+
"Analysis": analysis,
|
251 |
+
"Synthesis": synthesis,
|
252 |
+
"Evaluation": evaluation
|
253 |
+
}
|
254 |
+
|
255 |
+
# Number of questions
|
256 |
+
num_questions = st.slider("How many questions would you like to generate?", min_value=1, max_value=20, value=5, key='num_questions_slider')
|
257 |
+
|
258 |
+
# Submit button within the form
|
259 |
+
submit_button = st.form_submit_button(label='Generate Questions')
|
260 |
+
|
261 |
+
# Process form submission
|
262 |
+
if submit_button:
|
263 |
+
# Validate API key
|
264 |
+
if not api_key:
|
265 |
+
st.error("Please enter a valid Gemini API key.")
|
266 |
+
# Validate PDF source
|
267 |
+
elif not st.session_state.pdf_url and not st.session_state.uploaded_file:
|
268 |
+
st.error("Please enter a PDF URL or upload a PDF file.")
|
269 |
+
else:
|
270 |
+
# Normalize the Bloom's weights
|
271 |
+
normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights)
|
272 |
+
|
273 |
+
st.info("Normalized Bloom's Taxonomy Weights:")
|
274 |
+
st.json(normalized_bloom_weights)
|
275 |
+
|
276 |
+
# Role and instructions for the AI
|
277 |
+
role_description = "You are a question-generating AI agent, given context and instruction, you need to generate questions from the context."
|
278 |
+
response_instructions = "Please generate questions that are clear and relevant to the content of the paper. Generate questions which are separated by new lines, without any numbering or additional context."
|
279 |
+
|
280 |
+
# Generate questions
|
281 |
+
with st.spinner('Generating questions...'):
|
282 |
+
st.session_state.questions = process_pdf_and_generate_questions(
|
283 |
+
pdf_source=st.session_state.pdf_url if st.session_state.pdf_url else None,
|
284 |
+
uploaded_file=st.session_state.uploaded_file if st.session_state.uploaded_file else None,
|
285 |
+
api_key=api_key,
|
286 |
+
role_description=role_description,
|
287 |
+
response_instructions=response_instructions,
|
288 |
+
bloom_taxonomy_weights=normalized_bloom_weights,
|
289 |
+
num_questions=num_questions,
|
290 |
+
question_length=question_length,
|
291 |
+
include_numericals=st.session_state.include_numericals,
|
292 |
+
user_input=st.session_state.user_input
|
293 |
+
)
|
294 |
+
|
295 |
+
if st.session_state.questions:
|
296 |
+
st.header("Generated Questions")
|
297 |
+
|
298 |
+
# Create a form for question management to prevent reload
|
299 |
+
with st.form(key='questions_form'):
|
300 |
+
for idx, question in enumerate(st.session_state.questions, 1):
|
301 |
+
cols = st.columns([4, 1]) # Create two columns
|
302 |
+
|
303 |
+
with cols[0]:
|
304 |
+
# Display the question
|
305 |
+
st.write(f"Q{idx}: {question}")
|
306 |
+
|
307 |
+
# Add info button using Streamlit's expander
|
308 |
+
with st.expander("Show Bloom's Taxonomy Details"):
|
309 |
+
taxonomy_details = get_bloom_taxonomy_details(st.session_state.question_scores.get(question))
|
310 |
+
st.text(taxonomy_details)
|
311 |
+
|
312 |
+
# Use radio buttons for selection
|
313 |
+
with cols[1]:
|
314 |
+
selected_option = st.radio(
|
315 |
+
f"Select an option for Q{idx}",
|
316 |
+
["Accept", "Discard"],
|
317 |
+
key=f"radio_{idx}",
|
318 |
+
index=1
|
319 |
+
)
|
320 |
+
|
321 |
+
# Handle radio button state changes
|
322 |
+
if selected_option == "Accept":
|
323 |
+
if question not in st.session_state.accepted_questions:
|
324 |
+
st.session_state.accepted_questions.append(question)
|
325 |
+
else:
|
326 |
+
if question in st.session_state.accepted_questions:
|
327 |
+
st.session_state.accepted_questions.remove(question)
|
328 |
+
|
329 |
+
# Submit button for question selection
|
330 |
+
submit_questions = st.form_submit_button("Update Accepted Questions")
|
331 |
+
|
332 |
+
# Show accepted questions
|
333 |
+
if st.session_state.accepted_questions:
|
334 |
+
st.header("Accepted Questions")
|
335 |
+
for q in st.session_state.accepted_questions:
|
336 |
+
st.write(q)
|
337 |
+
|
338 |
+
# Download button for accepted questions
|
339 |
+
if st.button("Download Accepted Questions as PDF"):
|
340 |
+
filename = generate_pdf(st.session_state.accepted_questions, filename="accepted_questions.pdf")
|
341 |
+
if filename:
|
342 |
+
with open(filename, "rb") as pdf_file:
|
343 |
+
st.download_button(
|
344 |
+
label="Click to Download PDF",
|
345 |
+
data=pdf_file,
|
346 |
+
file_name="accepted_questions.pdf",
|
347 |
+
mime="application/pdf"
|
348 |
+
)
|
349 |
+
st.success("PDF generated successfully!")
|
350 |
+
else:
|
351 |
+
st.info("No questions selected yet.")
|
352 |
+
|
353 |
+
# Add some footer information
|
354 |
+
st.markdown("---")
|
355 |
+
st.markdown("""
|
356 |
+
### About this Tool
|
357 |
+
- Generate academic paper questions using Bloom's Taxonomy
|
358 |
+
- Customize question generation weights
|
359 |
+
- Select and refine generated questions
|
360 |
+
- Support for PDF via URL or local upload
|
361 |
+
""")
|
362 |
+
with tab2:
|
363 |
+
st.markdown("<h1 style='font-size: 28px;'>📄 Academic Paper Scorer</h1>", unsafe_allow_html=True)
|
364 |
+
st.markdown("Evaluate the Quality of Your Academic Paper")
|
365 |
+
|
366 |
+
# Create a styled container for the upload section
|
367 |
+
st.markdown("""
|
368 |
+
<style>
|
369 |
+
.upload-container {
|
370 |
+
background-color: #f0f2f6;
|
371 |
+
border-radius: 10px;
|
372 |
+
padding: 20px;
|
373 |
+
border: 2px dashed #4a6cf7;
|
374 |
+
text-align: center;
|
375 |
+
}
|
376 |
+
.score-breakdown {
|
377 |
+
background-color: #f8f9fa;
|
378 |
+
border-radius: 8px;
|
379 |
+
padding: 15px;
|
380 |
+
margin-bottom: 15px;
|
381 |
+
}
|
382 |
+
.score-header {
|
383 |
+
font-weight: bold;
|
384 |
+
color: #4a6cf7;
|
385 |
+
margin-bottom: 10px;
|
386 |
+
}
|
387 |
+
</style>
|
388 |
+
""", unsafe_allow_html=True)
|
389 |
+
|
390 |
+
with st.form(key='paper_scorer_form'):
|
391 |
+
st.header("Upload Your Academic Paper")
|
392 |
+
uploaded_file = st.file_uploader(
|
393 |
+
"Choose a PDF file",
|
394 |
+
type=['pdf','jpg','png','jpeg'],
|
395 |
+
label_visibility="collapsed"
|
396 |
+
)
|
397 |
+
|
398 |
+
st.markdown("<div style='text-align: center; margin-top: 20px;'><strong>OR</strong></div>", unsafe_allow_html=True)
|
399 |
+
if 'question_typed' not in st.session_state:
|
400 |
+
st.session_state.question_typed = ""
|
401 |
+
st.text_area("Paste your question here", value=st.session_state.question_typed, key="question_typed")
|
402 |
+
question_typed = st.session_state.question_typed
|
403 |
+
submit_button = st.form_submit_button(
|
404 |
+
"Score Paper",
|
405 |
+
use_container_width=True,
|
406 |
+
type="primary"
|
407 |
+
)
|
408 |
+
|
409 |
+
if submit_button:
|
410 |
+
# Calculate total score
|
411 |
+
pdf_path = save_uploaded_file(uploaded_file)
|
412 |
+
dummydata = sendtogemini(inputpath=pdf_path, question=st.session_state.question_typed)
|
413 |
+
#print(dummydata)
|
414 |
+
total_score = {'Remembering': 0, 'Understanding': 0, 'Applying': 0, 'Analyzing': 0, 'Evaluating': 0, 'Creating': 0}
|
415 |
+
for item in dummydata:
|
416 |
+
for category in total_score:
|
417 |
+
total_score[category] += item['score'][category]
|
418 |
+
|
419 |
+
# average_score = total_score / (len(dummydata) * 6 * 10) * 100
|
420 |
+
|
421 |
+
# Score display columns
|
422 |
+
categories = ['Remembering', 'Understanding', 'Applying', 'Analyzing', 'Evaluating', 'Creating']
|
423 |
+
|
424 |
+
# Create 6 columns in a single row
|
425 |
+
cols = st.columns(6)
|
426 |
+
|
427 |
+
# Iterate through categories and populate columns
|
428 |
+
for i, category in enumerate(categories):
|
429 |
+
with cols[i]:
|
430 |
+
score = round(total_score[category] / (len(dummydata) ),ndigits=3)
|
431 |
+
color = 'green' if score > .7 else 'orange' if score > .4 else 'red'
|
432 |
+
st.markdown(f"""
|
433 |
+
<div class="score-breakdown">
|
434 |
+
<div class="score-header" style="color: {color}">{category}</div>
|
435 |
+
<div style="font-size: 24px; color: {color};">{score}/{len(dummydata)}</div>
|
436 |
+
</div>
|
437 |
+
""", unsafe_allow_html=True)
|
438 |
+
|
439 |
+
with st.expander("Show Detailed Scores", expanded=True):
|
440 |
+
for idx, item in enumerate(dummydata, 1):
|
441 |
+
|
442 |
+
# Question header
|
443 |
+
st.markdown(f'<div class="score-header">Question {idx}: {item["question"]}</div>', unsafe_allow_html=True)
|
444 |
+
|
445 |
+
# Create columns for score display
|
446 |
+
score_cols = st.columns(6)
|
447 |
+
|
448 |
+
# Scoring categories
|
449 |
+
categories = ['Remembering', 'Understanding', 'Applying', 'Analyzing', 'Evaluating', 'Creating']
|
450 |
+
|
451 |
+
for col, category in zip(score_cols, categories):
|
452 |
+
with col:
|
453 |
+
# Determine color based on score
|
454 |
+
score = round(item['score'][category],ndigits=3)
|
455 |
+
color = 'green' if score > .7 else 'orange' if score > .3 else 'red'
|
456 |
+
|
457 |
+
st.markdown(f"""
|
458 |
+
<div style="text-align: center;
|
459 |
+
background-color: #f1f1f1;
|
460 |
+
border-radius: 5px;
|
461 |
+
padding: 5px;
|
462 |
+
margin-bottom: 5px;">
|
463 |
+
<div style="font-weight: bold; color: {color};">{category}</div>
|
464 |
+
<div style="font-size: 18px; color: {color};">{score}/1</div>
|
465 |
+
</div>
|
466 |
+
""", unsafe_allow_html=True)
|
467 |
+
|
468 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
469 |
+
|
470 |
+
# Add a separator between questions
|
471 |
+
if idx < len(dummydata):
|
472 |
+
st.markdown('---')
|
473 |
+
|
474 |
+
# Run Streamlit app
|
475 |
+
if __name__ == "__main__":
|
476 |
+
main()
|