Spaces:
Sleeping
Sleeping
added a large thing
Browse files
app.py
CHANGED
@@ -1,54 +1,513 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
model = DistilBertForSequenceClassification.from_pretrained('./fine_tuned_distilbert')
|
8 |
-
tokenizer = DistilBertTokenizer.from_pretrained('./fine_tuned_distilbert')
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
outputs = model(input_ids)
|
28 |
-
logits = outputs.logits
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
#
|
42 |
-
st.
|
43 |
|
44 |
-
#
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
st.write(f"{class_label}: {prob:.4f}")
|
|
|
1 |
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
from fpdf import FPDF
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import base64
|
9 |
+
import dotenv
|
10 |
+
from dotenv import load_dotenv
|
11 |
|
12 |
+
load_dotenv()
|
|
|
|
|
13 |
|
14 |
+
# Previous functions from Question Generator
|
15 |
+
def get_pdf_path(pdf_source=None, uploaded_file=None):
|
16 |
+
try:
|
17 |
+
# If a file is uploaded locally
|
18 |
+
if uploaded_file is not None:
|
19 |
+
# Create a temporary file to save the uploaded PDF
|
20 |
+
temp_dir = tempfile.mkdtemp()
|
21 |
+
pdf_path = os.path.join(temp_dir, uploaded_file.name)
|
22 |
+
|
23 |
+
# Save the uploaded file
|
24 |
+
with open(pdf_path, "wb") as pdf_file:
|
25 |
+
pdf_file.write(uploaded_file.getvalue())
|
26 |
+
return pdf_path
|
27 |
|
28 |
+
# If a URL is provided
|
29 |
+
if pdf_source:
|
30 |
+
response = requests.get(pdf_source, timeout=30)
|
31 |
+
response.raise_for_status()
|
32 |
+
|
33 |
+
# Create a temporary file
|
34 |
+
temp_dir = tempfile.mkdtemp()
|
35 |
+
pdf_path = os.path.join(temp_dir, "downloaded.pdf")
|
36 |
+
|
37 |
+
with open(pdf_path, "wb") as pdf_file:
|
38 |
+
pdf_file.write(response.content)
|
39 |
+
return pdf_path
|
40 |
|
41 |
+
# If no source is provided
|
42 |
+
st.error("No PDF source provided.")
|
43 |
+
return None
|
44 |
+
except Exception as e:
|
45 |
+
st.error(f"Error getting PDF: {e}")
|
46 |
+
return None
|
47 |
|
48 |
+
def extract_text_pymupdf(pdf_path):
|
49 |
+
try:
|
50 |
+
doc = fitz.open(pdf_path)
|
51 |
+
pages_content = []
|
52 |
+
for page_num in range(len(doc)):
|
53 |
+
page = doc[page_num]
|
54 |
+
pages_content.append(page.get_text())
|
55 |
+
doc.close()
|
56 |
+
return " ".join(pages_content) # Join all pages into one large context string
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Error extracting text from PDF: {e}")
|
59 |
+
return ""
|
60 |
|
61 |
+
def generate_ai_response(api_key, assistant_context, user_query, role_description, response_instructions, bloom_taxonomy_weights, num_questions):
|
62 |
+
try:
|
63 |
+
url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={api_key}"
|
|
|
|
|
64 |
|
65 |
+
prompt = f"""
|
66 |
+
You are a highly knowledgeable assistant. Your task is to assist the user with the following context from an academic paper.
|
67 |
+
|
68 |
+
**Role**: {role_description}
|
69 |
+
|
70 |
+
**Context**: {assistant_context}
|
71 |
+
|
72 |
+
**Instructions**: {response_instructions}
|
73 |
+
|
74 |
+
**Bloom's Taxonomy Weights**:
|
75 |
+
Knowledge: {bloom_taxonomy_weights['Knowledge']}%
|
76 |
+
Comprehension: {bloom_taxonomy_weights['Comprehension']}%
|
77 |
+
Application: {bloom_taxonomy_weights['Application']}%
|
78 |
+
Analysis: {bloom_taxonomy_weights['Analysis']}%
|
79 |
+
Synthesis: {bloom_taxonomy_weights['Synthesis']}%
|
80 |
+
Evaluation: {bloom_taxonomy_weights['Evaluation']}%
|
81 |
+
|
82 |
+
**Query**: {user_query}
|
83 |
+
|
84 |
+
**Number of Questions**: {num_questions}
|
85 |
+
"""
|
86 |
+
|
87 |
+
payload = {
|
88 |
+
"contents": [
|
89 |
+
{
|
90 |
+
"parts": [
|
91 |
+
{"text": prompt}
|
92 |
+
]
|
93 |
+
}
|
94 |
+
]
|
95 |
+
}
|
96 |
+
headers = {"Content-Type": "application/json"}
|
97 |
+
|
98 |
+
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60)
|
99 |
+
response.raise_for_status()
|
100 |
+
|
101 |
+
result = response.json()
|
102 |
+
questions = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "")
|
103 |
+
questions_list = [question.strip() for question in questions.split("\n") if question.strip()]
|
104 |
+
return questions_list
|
105 |
+
except requests.RequestException as e:
|
106 |
+
st.error(f"API request error: {e}")
|
107 |
+
return []
|
108 |
+
except Exception as e:
|
109 |
+
st.error(f"Error generating questions: {e}")
|
110 |
+
return []
|
111 |
+
|
112 |
+
def normalize_bloom_weights(bloom_weights):
|
113 |
+
total = sum(bloom_weights.values())
|
114 |
+
if total != 100:
|
115 |
+
normalization_factor = 100 / total
|
116 |
+
# Normalize each weight by multiplying it by the normalization factor
|
117 |
+
bloom_weights = {key: round(value * normalization_factor, 2) for key, value in bloom_weights.items()}
|
118 |
+
return bloom_weights
|
119 |
+
|
120 |
+
def generate_pdf(questions, filename="questions.pdf"):
|
121 |
+
try:
|
122 |
+
pdf = FPDF()
|
123 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
124 |
+
pdf.add_page()
|
125 |
+
|
126 |
+
# Set font
|
127 |
+
pdf.set_font("Arial", size=12)
|
128 |
+
|
129 |
+
# Add a title or heading
|
130 |
+
pdf.cell(200, 10, txt="Generated Questions", ln=True, align="C")
|
131 |
+
|
132 |
+
# Add space between title and questions
|
133 |
+
pdf.ln(10)
|
134 |
+
|
135 |
+
# Loop through questions and add them to the PDF
|
136 |
+
for i, question in enumerate(questions, 1):
|
137 |
+
# Using multi_cell for wrapping the text in case it's too long
|
138 |
+
pdf.multi_cell(0, 10, f"Q{i}: {question}")
|
139 |
+
|
140 |
+
# Save the generated PDF to the file
|
141 |
+
pdf.output(filename)
|
142 |
+
return filename
|
143 |
+
except Exception as e:
|
144 |
+
st.error(f"Error generating PDF: {e}")
|
145 |
+
return None
|
146 |
+
|
147 |
+
def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_description, response_instructions, bloom_taxonomy_weights, num_questions):
|
148 |
+
try:
|
149 |
+
# Get PDF path (either from URL or uploaded file)
|
150 |
+
pdf_path = get_pdf_path(pdf_source, uploaded_file)
|
151 |
+
if not pdf_path:
|
152 |
+
return []
|
153 |
+
|
154 |
+
# Extract text
|
155 |
+
pdf_text = extract_text_pymupdf(pdf_path)
|
156 |
+
if not pdf_text:
|
157 |
+
return []
|
158 |
+
|
159 |
+
# Generate questions
|
160 |
+
assistant_context = pdf_text
|
161 |
+
user_query = "Generate questions based on the above context."
|
162 |
+
normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights)
|
163 |
+
questions = generate_ai_response(
|
164 |
+
api_key,
|
165 |
+
assistant_context,
|
166 |
+
user_query,
|
167 |
+
role_description,
|
168 |
+
response_instructions,
|
169 |
+
normalized_bloom_weights,
|
170 |
+
num_questions
|
171 |
+
)
|
172 |
+
|
173 |
+
# Clean up temporary PDF file
|
174 |
+
try:
|
175 |
+
os.remove(pdf_path)
|
176 |
+
# Remove the temporary directory
|
177 |
+
os.rmdir(os.path.dirname(pdf_path))
|
178 |
+
except Exception as e:
|
179 |
+
st.warning(f"Could not delete temporary PDF file: {e}")
|
180 |
+
|
181 |
+
return questions
|
182 |
+
except Exception as e:
|
183 |
+
st.error(f"Error processing PDF and generating questions: {e}")
|
184 |
+
return []
|
185 |
+
|
186 |
+
dummydata = [
|
187 |
+
{"question": "What is the main idea of the paper?", "score": {
|
188 |
+
"Knowledge": 10,
|
189 |
+
"Comprehension": 9,
|
190 |
+
"Application": 8,
|
191 |
+
"Analysis": 7,
|
192 |
+
"Synthesis": 6,
|
193 |
+
"Evaluation": 5
|
194 |
+
}},
|
195 |
+
{"question": "What are the key findings of the paper?", "score": {
|
196 |
+
"Knowledge": 9,
|
197 |
+
"Comprehension": 8,
|
198 |
+
"Application": 7,
|
199 |
+
"Analysis": 6,
|
200 |
+
"Synthesis": 5,
|
201 |
+
"Evaluation": 4
|
202 |
+
}},
|
203 |
+
{"question": "How does the paper contribute to the field?", "score": {
|
204 |
+
"Knowledge": 8,
|
205 |
+
"Comprehension": 7,
|
206 |
+
"Application": 6,
|
207 |
+
"Analysis": 5,
|
208 |
+
"Synthesis": 4,
|
209 |
+
"Evaluation": 3
|
210 |
+
}},
|
211 |
+
{"question": "What are the limitations of the paper?", "score": {
|
212 |
+
"Knowledge": 7,
|
213 |
+
"Comprehension": 6,
|
214 |
+
"Application": 5,
|
215 |
+
"Analysis": 4,
|
216 |
+
"Synthesis": 3,
|
217 |
+
"Evaluation": 2
|
218 |
+
}},
|
219 |
+
{"question": "What are the future research directions?", "score": {
|
220 |
+
"Knowledge": 6,
|
221 |
+
"Comprehension": 5,
|
222 |
+
"Application": 4,
|
223 |
+
"Analysis": 3,
|
224 |
+
"Synthesis": 2,
|
225 |
+
"Evaluation": 1
|
226 |
+
}},
|
227 |
+
{"question": "How does the paper compare to existing work?", "score": {
|
228 |
+
"Knowledge": 5,
|
229 |
+
"Comprehension": 4,
|
230 |
+
"Application": 3,
|
231 |
+
"Analysis": 2,
|
232 |
+
"Synthesis": 1,
|
233 |
+
"Evaluation": 0
|
234 |
+
}
|
235 |
+
}
|
236 |
+
|
237 |
+
]
|
238 |
+
|
239 |
+
def main():
|
240 |
+
st.set_page_config(page_title="Academic Paper Tool", page_icon="📝", layout="wide")
|
241 |
|
242 |
+
# Tabs for different functionalities
|
243 |
+
tab1, tab2 = st.tabs(["Question Generator", "Paper Scorer"])
|
244 |
+
|
245 |
+
if 'totalscore' not in st.session_state:
|
246 |
+
st.session_state.totalscore = None
|
247 |
+
if 'show_details' not in st.session_state:
|
248 |
+
st.session_state.show_details = False
|
249 |
+
|
250 |
|
251 |
+
# Question Generator Tab
|
252 |
+
with tab1:
|
253 |
+
st.title("🎓 Academic Paper Question Generator")
|
254 |
+
st.markdown("Generate insightful questions from academic papers using Bloom's Taxonomy")
|
255 |
+
|
256 |
+
# Initialize session state variables with defaults
|
257 |
+
if 'pdf_source_type' not in st.session_state:
|
258 |
+
st.session_state.pdf_source_type = "URL"
|
259 |
+
if 'pdf_url' not in st.session_state:
|
260 |
+
st.session_state.pdf_url = "https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf"
|
261 |
+
if 'uploaded_file' not in st.session_state:
|
262 |
+
st.session_state.uploaded_file = None
|
263 |
+
if 'questions' not in st.session_state:
|
264 |
+
st.session_state.questions = []
|
265 |
+
if 'accepted_questions' not in st.session_state:
|
266 |
+
st.session_state.accepted_questions = []
|
267 |
+
|
268 |
+
# API Configuration
|
269 |
+
api_key = os.getenv('GEMINI_API_KEY')
|
270 |
+
# api_key = st.sidebar.text_input("Enter Gemini API Key", type="password", value=apivalue)
|
271 |
+
|
272 |
+
# Main form for PDF and question generation
|
273 |
+
with st.form(key='pdf_generation_form'):
|
274 |
+
st.header("PDF Source Configuration")
|
275 |
+
|
276 |
+
st.session_state.pdf_url = st.text_input(
|
277 |
+
"Enter the URL of the PDF",
|
278 |
+
key="pdf_url_input"
|
279 |
+
)
|
280 |
+
|
281 |
+
st.markdown("<h3 style='text-align: center;'>OR</h3>", unsafe_allow_html=True)
|
282 |
+
|
283 |
+
st.session_state.uploaded_file = st.file_uploader(
|
284 |
+
"Upload a PDF file",
|
285 |
+
type=['pdf'],
|
286 |
+
key="pdf_file_upload"
|
287 |
+
)
|
288 |
+
|
289 |
+
# Bloom's Taxonomy Weights
|
290 |
+
st.subheader("Adjust Bloom's Taxonomy Weights")
|
291 |
+
col1, col2, col3 = st.columns(3)
|
292 |
+
|
293 |
+
with col1:
|
294 |
+
knowledge = st.slider("Knowledge: Remembering information", 0, 100, 20, key='knowledge_slider')
|
295 |
+
application = st.slider("Application: Using abstractions in concrete situations", 0, 100, 20, key='application_slider')
|
296 |
+
|
297 |
+
with col2:
|
298 |
+
comprehension = st.slider("Comprehension: Explaining the meaning of information", 0, 100, 20, key='comprehension_slider')
|
299 |
+
analysis = st.slider("Analysis: Breaking down a whole into component parts", 0, 100, 20, key='analysis_slider')
|
300 |
+
|
301 |
+
with col3:
|
302 |
+
synthesis = st.slider("Synthesis: Putting parts together to form a new and integrated whole", 0, 100, 10, key='synthesis_slider')
|
303 |
+
evaluation = st.slider("Evaluation: Making and defending judgments based on internal evidence or external criteria", 0, 100, 10, key='evaluation_slider')
|
304 |
+
|
305 |
+
# Collect the Bloom's Taxonomy weights
|
306 |
+
bloom_taxonomy_weights = {
|
307 |
+
"Knowledge": knowledge,
|
308 |
+
"Comprehension": comprehension,
|
309 |
+
"Application": application,
|
310 |
+
"Analysis": analysis,
|
311 |
+
"Synthesis": synthesis,
|
312 |
+
"Evaluation": evaluation
|
313 |
+
}
|
314 |
|
315 |
+
# Number of questions
|
316 |
+
num_questions = st.slider("How many questions would you like to generate?", min_value=1, max_value=20, value=5, key='num_questions_slider')
|
317 |
|
318 |
+
# Submit button within the form
|
319 |
+
submit_button = st.form_submit_button(label='Generate Questions')
|
320 |
+
|
321 |
+
# Process form submission
|
322 |
+
if submit_button:
|
323 |
+
# Validate API key
|
324 |
+
if not api_key:
|
325 |
+
st.error("Please enter a valid Gemini API key.")
|
326 |
+
# Validate PDF source
|
327 |
+
elif not st.session_state.pdf_url and not st.session_state.uploaded_file:
|
328 |
+
st.error("Please enter a PDF URL or upload a PDF file.")
|
329 |
+
else:
|
330 |
+
# Normalize the Bloom's weights
|
331 |
+
normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights)
|
332 |
+
|
333 |
+
st.info("Normalized Bloom's Taxonomy Weights:")
|
334 |
+
st.json(normalized_bloom_weights)
|
335 |
+
|
336 |
+
# Role and instructions for the AI
|
337 |
+
role_description = "You are a question-generating AI agent, given context and instruction, you need to generate questions from the context."
|
338 |
+
response_instructions = "Please generate questions that are clear and relevant to the content of the paper. Generate questions which are separated by new lines, without any numbering or additional context."
|
339 |
+
|
340 |
+
# Generate questions
|
341 |
+
with st.spinner('Generating questions...'):
|
342 |
+
st.session_state.questions = process_pdf_and_generate_questions(
|
343 |
+
pdf_source=st.session_state.pdf_url if st.session_state.pdf_url else None,
|
344 |
+
uploaded_file=st.session_state.uploaded_file if st.session_state.uploaded_file else None,
|
345 |
+
api_key=api_key,
|
346 |
+
role_description=role_description,
|
347 |
+
response_instructions=response_instructions,
|
348 |
+
bloom_taxonomy_weights=normalized_bloom_weights,
|
349 |
+
num_questions=num_questions
|
350 |
+
)
|
351 |
+
if st.session_state.questions:
|
352 |
+
st.header("Generated Questions")
|
353 |
+
|
354 |
+
# Create a form for question management to prevent reload
|
355 |
+
with st.form(key='questions_form'):
|
356 |
+
for idx, question in enumerate(st.session_state.questions, 1):
|
357 |
+
cols = st.columns([4, 1]) # Create two columns for radio buttons (Accept, Discard)
|
358 |
+
|
359 |
+
with cols[0]:
|
360 |
+
st.write(f"Q{idx}: {question}")
|
361 |
+
|
362 |
+
# Use radio buttons for selection
|
363 |
+
with cols[1]:
|
364 |
+
# Default value is 'Discard', so users can change it to 'Accept'
|
365 |
+
selected_option = st.radio(f"Select an option for Q{idx}", ["Accept", "Discard"], key=f"radio_{idx}", index=1)
|
366 |
+
|
367 |
+
# Handle radio button state changes
|
368 |
+
if selected_option == "Accept":
|
369 |
+
# Add to accepted questions if 'Accept' is selected
|
370 |
+
if question not in st.session_state.accepted_questions:
|
371 |
+
st.session_state.accepted_questions.append(question)
|
372 |
+
else:
|
373 |
+
# Remove from accepted questions if 'Discard' is selected
|
374 |
+
if question in st.session_state.accepted_questions:
|
375 |
+
st.session_state.accepted_questions.remove(question)
|
376 |
+
|
377 |
+
# Submit button for question selection
|
378 |
+
submit_questions = st.form_submit_button("Update Accepted Questions")
|
379 |
+
|
380 |
+
|
381 |
+
# Show accepted questions
|
382 |
+
if st.session_state.accepted_questions:
|
383 |
+
st.header("Accepted Questions")
|
384 |
+
for q in st.session_state.accepted_questions:
|
385 |
+
st.write(q)
|
386 |
+
|
387 |
+
# Download button for accepted questions
|
388 |
+
if st.button("Download Accepted Questions as PDF"):
|
389 |
+
filename = generate_pdf(st.session_state.accepted_questions, filename="accepted_questions.pdf")
|
390 |
+
if filename:
|
391 |
+
with open(filename, "rb") as pdf_file:
|
392 |
+
st.download_button(
|
393 |
+
label="Click to Download PDF",
|
394 |
+
data=pdf_file,
|
395 |
+
file_name="accepted_questions.pdf",
|
396 |
+
mime="application/pdf"
|
397 |
+
)
|
398 |
+
st.success("PDF generated successfully!")
|
399 |
+
else:
|
400 |
+
st.info("No questions selected yet.")
|
401 |
+
|
402 |
+
# Add some footer information
|
403 |
+
st.markdown("---")
|
404 |
+
st.markdown("""
|
405 |
+
### About this Tool
|
406 |
+
- Generate academic paper questions using Bloom's Taxonomy
|
407 |
+
- Customize question generation weights
|
408 |
+
- Select and refine generated questions
|
409 |
+
- Support for PDF via URL or local upload
|
410 |
+
""")
|
411 |
+
with tab2:
|
412 |
+
st.title("📄 Academic Paper Scorer")
|
413 |
+
|
414 |
+
# Add a descriptive subheader
|
415 |
+
st.markdown("### Evaluate the Quality of Your Academic Paper")
|
416 |
+
|
417 |
+
# Create a styled container for the upload section
|
418 |
+
st.markdown("""
|
419 |
+
<style>
|
420 |
+
.upload-container {
|
421 |
+
background-color: #f0f2f6;
|
422 |
+
border-radius: 10px;
|
423 |
+
padding: 20px;
|
424 |
+
border: 2px dashed #4a6cf7;
|
425 |
+
text-align: center;
|
426 |
+
}
|
427 |
+
.score-breakdown {
|
428 |
+
background-color: #f8f9fa;
|
429 |
+
border-radius: 8px;
|
430 |
+
padding: 15px;
|
431 |
+
margin-bottom: 15px;
|
432 |
+
}
|
433 |
+
.score-header {
|
434 |
+
font-weight: bold;
|
435 |
+
color: #4a6cf7;
|
436 |
+
margin-bottom: 10px;
|
437 |
+
}
|
438 |
+
</style>
|
439 |
+
""", unsafe_allow_html=True)
|
440 |
+
|
441 |
+
with st.form(key='paper_scorer_form'):
|
442 |
+
st.header("Upload Your Academic Paper")
|
443 |
+
uploaded_file = st.file_uploader(
|
444 |
+
"Choose a PDF file",
|
445 |
+
type=['pdf','jpg','png','jpeg'],
|
446 |
+
label_visibility="collapsed"
|
447 |
+
)
|
448 |
+
|
449 |
+
# Custom submit button with some styling
|
450 |
+
submit_button = st.form_submit_button(
|
451 |
+
"Score Paper",
|
452 |
+
use_container_width=True,
|
453 |
+
type="primary"
|
454 |
+
)
|
455 |
|
456 |
+
if submit_button:
|
457 |
+
# Calculate total score
|
458 |
+
total_score = sum(
|
459 |
+
sum(question['score'].values())
|
460 |
+
for question in dummydata
|
461 |
+
)
|
462 |
+
average_score = total_score / (len(dummydata) * 6 * 10) * 100
|
463 |
+
|
464 |
+
# Score display columns
|
465 |
+
col1, col2 = st.columns([2,1])
|
466 |
+
|
467 |
+
with col1:
|
468 |
+
st.metric(label="Total Paper Score", value=f"{average_score:.2f}/100")
|
469 |
+
|
470 |
+
with st.expander("Show Detailed Scores", expanded=True):
|
471 |
+
for idx, item in enumerate(dummydata, 1):
|
472 |
+
|
473 |
+
# Question header
|
474 |
+
st.markdown(f'<div class="score-header">Question {idx}: {item["question"]}</div>', unsafe_allow_html=True)
|
475 |
+
|
476 |
+
# Create columns for score display
|
477 |
+
score_cols = st.columns(6)
|
478 |
+
|
479 |
+
# Scoring categories
|
480 |
+
categories = ['Knowledge', 'Comprehension', 'Application', 'Analysis', 'Synthesis', 'Evaluation']
|
481 |
+
|
482 |
+
for col, category in zip(score_cols, categories):
|
483 |
+
with col:
|
484 |
+
# Determine color based on score
|
485 |
+
score = item['score'][category]
|
486 |
+
color = 'green' if score > 7 else 'orange' if score > 4 else 'red'
|
487 |
+
|
488 |
+
st.markdown(f"""
|
489 |
+
<div style="text-align: center;
|
490 |
+
background-color: #f1f1f1;
|
491 |
+
border-radius: 5px;
|
492 |
+
padding: 5px;
|
493 |
+
margin-bottom: 5px;">
|
494 |
+
<div style="font-weight: bold; color: {color};">{category}</div>
|
495 |
+
<div style="font-size: 18px; color: {color};">{score}/10</div>
|
496 |
+
</div>
|
497 |
+
""", unsafe_allow_html=True)
|
498 |
+
|
499 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
500 |
+
|
501 |
+
# Add a separator between questions
|
502 |
+
if idx < len(dummydata):
|
503 |
+
st.markdown('---')
|
504 |
+
# but = st.button("Show Detailed Scores")
|
505 |
+
# if but:
|
506 |
+
# st.write("Detailed Scores")
|
507 |
+
# with st.container():
|
508 |
+
# for key, value in dummydata.items():
|
509 |
+
# st.write(f"{key}: {value}")
|
510 |
|
511 |
+
# Run Streamlit app
|
512 |
+
if __name__ == "__main__":
|
513 |
+
main()
|
|