import streamlit as st import requests import json import fitz # PyMuPDF from fpdf import FPDF import os import tempfile import base64 import dotenv from dotenv import load_dotenv import torch from transformers import DistilBertForSequenceClassification, DistilBertTokenizer from torch.nn.functional import softmax from doctr.models import ocr_predictor from doctr.io import DocumentFile import tempfile def save_uploaded_file(uploaded_file): if uploaded_file is not None: file_extension = uploaded_file.name.split('.')[-1].lower() temp_file = tempfile.NamedTemporaryFile(delete=False, suffix = f'.{file_extension}') temp_file.write(uploaded_file.getvalue()) temp_file.close() return temp_file.name return None load_dotenv() model = DistilBertForSequenceClassification.from_pretrained('./fine_tuned_distilbert') tokenizer = DistilBertTokenizer.from_pretrained('./fine_tuned_distilbert') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) mapping = {"Remembering": 0, "Understanding": 1, "Applying": 2, "Analyzing": 3, "Evaluating": 4, "Creating": 5} reverse_mapping = {v: k for k, v in mapping.items()} modelocr = ocr_predictor(det_arch='db_resnet50', reco_arch='crnn_vgg16_bn', pretrained=True) # Previous functions from Question Generator def get_pdf_path(pdf_source=None, uploaded_file=None): try: # If a file is uploaded locally if uploaded_file is not None: # Create a temporary file to save the uploaded PDF temp_dir = tempfile.mkdtemp() pdf_path = os.path.join(temp_dir, uploaded_file.name) # Save the uploaded file with open(pdf_path, "wb") as pdf_file: pdf_file.write(uploaded_file.getvalue()) return pdf_path # If a URL is provided if pdf_source: response = requests.get(pdf_source, timeout=30) response.raise_for_status() # Create a temporary file temp_dir = tempfile.mkdtemp() pdf_path = os.path.join(temp_dir, "downloaded.pdf") with open(pdf_path, "wb") as pdf_file: pdf_file.write(response.content) return pdf_path # If no source is provided st.error("No PDF source provided.") return None except Exception as e: st.error(f"Error getting PDF: {e}") return None def extract_text_pymupdf(pdf_path): try: doc = fitz.open(pdf_path) pages_content = [] for page_num in range(len(doc)): page = doc[page_num] pages_content.append(page.get_text()) doc.close() return " ".join(pages_content) # Join all pages into one large context string except Exception as e: st.error(f"Error extracting text from PDF: {e}") return "" def generate_ai_response(api_key, assistant_context, user_query, role_description, response_instructions, bloom_taxonomy_weights, num_questions): try: url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={api_key}" prompt = f""" You are a highly knowledgeable assistant. Your task is to assist the user with the following context from an academic paper. **Role**: {role_description} **Context**: {assistant_context} **Instructions**: {response_instructions} **Bloom's Taxonomy Weights**: Knowledge: {bloom_taxonomy_weights['Knowledge']}% Comprehension: {bloom_taxonomy_weights['Comprehension']}% Application: {bloom_taxonomy_weights['Application']}% Analysis: {bloom_taxonomy_weights['Analysis']}% Synthesis: {bloom_taxonomy_weights['Synthesis']}% Evaluation: {bloom_taxonomy_weights['Evaluation']}% **Query**: {user_query} **Number of Questions**: {num_questions} """ payload = { "contents": [ { "parts": [ {"text": prompt} ] } ] } headers = {"Content-Type": "application/json"} response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60) response.raise_for_status() result = response.json() questions = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "") questions_list = [question.strip() for question in questions.split("\n") if question.strip()] return questions_list except requests.RequestException as e: st.error(f"API request error: {e}") return [] except Exception as e: st.error(f"Error generating questions: {e}") return [] def normalize_bloom_weights(bloom_weights): total = sum(bloom_weights.values()) if total != 100: normalization_factor = 100 / total # Normalize each weight by multiplying it by the normalization factor bloom_weights = {key: round(value * normalization_factor, 2) for key, value in bloom_weights.items()} return bloom_weights def generate_pdf(questions, filename="questions.pdf"): try: pdf = FPDF() pdf.set_auto_page_break(auto=True, margin=15) pdf.add_page() # Set font pdf.set_font("Arial", size=12) # Add a title or heading pdf.cell(200, 10, txt="Generated Questions", ln=True, align="C") # Add space between title and questions pdf.ln(10) # Loop through questions and add them to the PDF for i, question in enumerate(questions, 1): # Using multi_cell for wrapping the text in case it's too long pdf.multi_cell(0, 10, f"Q{i}: {question}") # Save the generated PDF to the file pdf.output(filename) return filename except Exception as e: st.error(f"Error generating PDF: {e}") return None def process_pdf_and_generate_questions(pdf_source, uploaded_file, api_key, role_description, response_instructions, bloom_taxonomy_weights, num_questions): try: # Get PDF path (either from URL or uploaded file) pdf_path = get_pdf_path(pdf_source, uploaded_file) if not pdf_path: return [] # Extract text pdf_text = extract_text_pymupdf(pdf_path) if not pdf_text: return [] # Generate questions assistant_context = pdf_text user_query = "Generate questions based on the above context." normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights) questions = generate_ai_response( api_key, assistant_context, user_query, role_description, response_instructions, normalized_bloom_weights, num_questions ) # Clean up temporary PDF file try: os.remove(pdf_path) # Remove the temporary directory os.rmdir(os.path.dirname(pdf_path)) except Exception as e: st.warning(f"Could not delete temporary PDF file: {e}") return questions except Exception as e: st.error(f"Error processing PDF and generating questions: {e}") return [] def main(): st.set_page_config(page_title="Academic Paper Tool", page_icon="📝", layout="wide") # Tabs for different functionalities st.markdown(""" """, unsafe_allow_html=True) tab1, tab2 = st.tabs(["Question Generator", "Paper Scorer"]) if 'totalscore' not in st.session_state: st.session_state.totalscore = None if 'show_details' not in st.session_state: st.session_state.show_details = False # Question Generator Tab with tab1: st.title("🎓 Academic Paper Question Generator") st.markdown("Generate insightful questions from academic papers using Bloom's Taxonomy") # Initialize session state variables with defaults if 'pdf_source_type' not in st.session_state: st.session_state.pdf_source_type = "URL" if 'pdf_url' not in st.session_state: st.session_state.pdf_url = "https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf" if 'uploaded_file' not in st.session_state: st.session_state.uploaded_file = None if 'questions' not in st.session_state: st.session_state.questions = [] if 'accepted_questions' not in st.session_state: st.session_state.accepted_questions = [] # API Configuration api_key = os.getenv('GEMINI_API_KEY') # api_key = st.sidebar.text_input("Enter Gemini API Key", type="password", value=apivalue) # Main form for PDF and question generation with st.form(key='pdf_generation_form'): st.header("PDF Source Configuration") st.session_state.pdf_url = st.text_input( "Enter the URL of the PDF", value=st.session_state.pdf_url, key="pdf_url_input" ) st.markdown("

OR

", unsafe_allow_html=True) st.session_state.uploaded_file = st.file_uploader( "Upload a PDF file", type=['pdf'], key="pdf_file_upload" ) # Bloom's Taxonomy Weights st.subheader("Adjust Bloom's Taxonomy Weights") col1, col2, col3 = st.columns(3) with col1: knowledge = st.slider("Knowledge or Remembering: Remembering information", 0, 100, 20, key='knowledge_slider') application = st.slider("Application: Use knowledge in new situations or solve problems.", 0, 100, 20, key='application_slider') with col2: comprehension = st.slider("Comprehension or Understanding: Comprehend and explain ideas or concepts.", 0, 100, 20, key='comprehension_slider') analysis = st.slider("Analysis: Breaking down a whole into component parts", 0, 100, 20, key='analysis_slider') with col3: synthesis = st.slider("Synthesis or Creating: Putting parts together to form a new and integrated whole", 0, 100, 10, key='synthesis_slider') evaluation = st.slider("Evaluation: Making and defending judgments based on internal evidence or external criteria", 0, 100, 10, key='evaluation_slider') # Collect the Bloom's Taxonomy weights bloom_taxonomy_weights = { "Knowledge": knowledge, "Comprehension": comprehension, "Application": application, "Analysis": analysis, "Synthesis": synthesis, "Evaluation": evaluation } # Number of questions num_questions = st.slider("How many questions would you like to generate?", min_value=1, max_value=20, value=5, key='num_questions_slider') # Submit button within the form submit_button = st.form_submit_button(label='Generate Questions') # Process form submission if submit_button: # Validate API key if not api_key: st.error("Please enter a valid Gemini API key.") # Validate PDF source elif not st.session_state.pdf_url and not st.session_state.uploaded_file: st.error("Please enter a PDF URL or upload a PDF file.") else: # Normalize the Bloom's weights normalized_bloom_weights = normalize_bloom_weights(bloom_taxonomy_weights) st.info("Normalized Bloom's Taxonomy Weights:") st.json(normalized_bloom_weights) # Role and instructions for the AI role_description = "You are a question-generating AI agent, given context and instruction, you need to generate questions from the context." response_instructions = "Please generate questions that are clear and relevant to the content of the paper. Generate questions which are separated by new lines, without any numbering or additional context." # Generate questions with st.spinner('Generating questions...'): st.session_state.questions = process_pdf_and_generate_questions( pdf_source=st.session_state.pdf_url if st.session_state.pdf_url else None, uploaded_file=st.session_state.uploaded_file if st.session_state.uploaded_file else None, api_key=api_key, role_description=role_description, response_instructions=response_instructions, bloom_taxonomy_weights=normalized_bloom_weights, num_questions=num_questions ) if st.session_state.questions: st.header("Generated Questions") # Create a form for question management to prevent reload with st.form(key='questions_form'): for idx, question in enumerate(st.session_state.questions, 1): cols = st.columns([4, 1]) # Create two columns for radio buttons (Accept, Discard) with cols[0]: st.write(f"Q{idx}: {question}") # Use radio buttons for selection with cols[1]: # Default value is 'Discard', so users can change it to 'Accept' selected_option = st.radio(f"Select an option for Q{idx}", ["Accept", "Discard"], key=f"radio_{idx}", index=1) # Handle radio button state changes if selected_option == "Accept": # Add to accepted questions if 'Accept' is selected if question not in st.session_state.accepted_questions: st.session_state.accepted_questions.append(question) else: # Remove from accepted questions if 'Discard' is selected if question in st.session_state.accepted_questions: st.session_state.accepted_questions.remove(question) # Submit button for question selection submit_questions = st.form_submit_button("Update Accepted Questions") # Show accepted questions if st.session_state.accepted_questions: st.header("Accepted Questions") for q in st.session_state.accepted_questions: st.write(q) # Download button for accepted questions if st.button("Download Accepted Questions as PDF"): filename = generate_pdf(st.session_state.accepted_questions, filename="accepted_questions.pdf") if filename: with open(filename, "rb") as pdf_file: st.download_button( label="Click to Download PDF", data=pdf_file, file_name="accepted_questions.pdf", mime="application/pdf" ) st.success("PDF generated successfully!") else: st.info("No questions selected yet.") # Add some footer information st.markdown("---") st.markdown(""" ### About this Tool - Generate academic paper questions using Bloom's Taxonomy - Customize question generation weights - Select and refine generated questions - Support for PDF via URL or local upload """) with tab2: st.title("📄 Academic Paper Scorer") # Add a descriptive subheader st.markdown("### Evaluate the Quality of Your Academic Paper") # Create a styled container for the upload section st.markdown(""" """, unsafe_allow_html=True) with st.form(key='paper_scorer_form'): st.header("Upload Your Academic Paper") uploaded_file = st.file_uploader( "Choose a PDF file", type=['pdf','jpg','png','jpeg'], label_visibility="collapsed" ) # Custom submit button with some styling submit_button = st.form_submit_button( "Score Paper", use_container_width=True, type="primary" ) if submit_button: # Calculate total score pdf_path = save_uploaded_file(uploaded_file) dummydata = sendtogemini(pdf_path) #print(dummydata) total_score = {'Remembering': 0, 'Understanding': 0, 'Applying': 0, 'Analyzing': 0, 'Evaluating': 0, 'Creating': 0} for item in dummydata: for category in total_score: total_score[category] += item['score'][category] # average_score = total_score / (len(dummydata) * 6 * 10) * 100 # Score display columns categories = ['Remembering', 'Understanding', 'Applying', 'Analyzing', 'Evaluating', 'Creating'] # Create 6 columns in a single row cols = st.columns(6) # Iterate through categories and populate columns for i, category in enumerate(categories): with cols[i]: score = round(total_score[category] / (len(dummydata) ),ndigits=3) color = 'green' if score > .7 else 'orange' if score > .4 else 'red' st.markdown(f"""
{category}
{score}/{len(dummydata)}
""", unsafe_allow_html=True) with st.expander("Show Detailed Scores", expanded=True): for idx, item in enumerate(dummydata, 1): # Question header st.markdown(f'
Question {idx}: {item["question"]}
', unsafe_allow_html=True) # Create columns for score display score_cols = st.columns(6) # Scoring categories categories = ['Remembering', 'Understanding', 'Applying', 'Analyzing', 'Evaluating', 'Creating'] for col, category in zip(score_cols, categories): with col: # Determine color based on score score = round(item['score'][category],ndigits=3) color = 'green' if score > .7 else 'orange' if score > .4 else 'red' st.markdown(f"""
{category}
{score}/1
""", unsafe_allow_html=True) st.markdown('', unsafe_allow_html=True) # Add a separator between questions if idx < len(dummydata): st.markdown('---') def predict_with_loaded_model(text): inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512) input_ids = inputs['input_ids'].to(device) model.eval() with torch.no_grad(): outputs = model(input_ids) logits = outputs.logits probabilities = softmax(logits, dim=-1) probabilities = probabilities.squeeze().cpu().numpy() # Convert to float and format to 3 decimal places class_probabilities = {reverse_mapping[i]: float(f"{prob:.3f}") for i, prob in enumerate(probabilities)} return class_probabilities # def process_document(input_path): # return {'Avg_Confidence': 0.9397169561947093, 'String': ['What are the key differences between classification and regression tasks in', 'supervised learning, and how do you determine which algorithm to use for a', 'specific problem?', 'e How does clustering differ from dimensionality reduction, and can you', 'provide real-world examples of where each is applied?', 'What are common evaluation metrics for classification models, and how do', 'precision, recall, and F1-score relate to each other?', 'How do convolutional neural networks (CNNS) and recurrent neural networks', '(RNNS) differ in their architecture and applications?', 'What steps can be taken to identify and mitigate bias in machine learning', 'models, and why is this an important consideration?']} def process_document(input_path): if input_path.lower().endswith(".pdf"): doc = DocumentFile.from_pdf(input_path) #print(f"Number of pages: {len(doc)}") elif input_path.lower().endswith((".jpg", ".jpeg", ".png", ".bmp", ".tiff")): doc = DocumentFile.from_images(input_path) else: raise ValueError("Unsupported file type. Please provide a PDF or an image file.") result = modelocr(doc) def calculate_average_confidence(result): total_confidence = 0 word_count = 0 for page in result.pages: for block in page.blocks: for line in block.lines: for word in line.words: total_confidence += word.confidence word_count += 1 average_confidence = total_confidence / word_count if word_count > 0 else 0 return average_confidence average_confidence = calculate_average_confidence(result) string_result = result.render() return {'Avg_Confidence': average_confidence, 'String':string_result.split('\n')} def sendtogemini(inputpath): qw = process_document(inputpath) questionset = str(qw['String']) # send this prompt to gemini : questionset += """You are given a list of text fragments containing questions fragments extracted by an ocr model. Your task is to: # only Merge the question fragments into complete and coherent questions.Don't answer then. # Separate each question , start a new question with @ to make them easily distinguishable for further processing.""" url = f"https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent?key={os.getenv('GEMINI_API_KEY')}" payload = { "contents": [ { "parts": [ {"text": questionset} ] } ] } headers = {"Content-Type": "application/json"} response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=60) result = response.json() res1 = result.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "") question = [] for i in res1.split('\n'): i = i.strip() if len(i) > 0: if i[0] == '@': i = i[1:].strip().lower() if i[0] == 'q': question.append(i[1:].strip()) else: question.append(i) data = [] for i in question: d = {} d['question'] = i d['score'] = predict_with_loaded_model(i) data.append(d) return data # Run Streamlit app if __name__ == "__main__": main()