File size: 6,374 Bytes
40e0a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
import pandas as pd
import io
import os
from dotenv import load_dotenv
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
from llama_index.readers.file.paged_csv.base import PagedCSVReader
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.core.ingestion import IngestionPipeline
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain_community.vectorstores import FAISS as LangChainFAISS
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
import faiss
import tempfile

# Load environment variables
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")

# Global settings for LlamaIndex
EMBED_DIMENSION = 512
Settings.llm = OpenAI(model="gpt-3.5-turbo")
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION)

# Streamlit app
st.title("Chat with CSV Files - LangChain vs LlamaIndex")

# File uploader
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
if uploaded_file:
    try:
        # Read and preview CSV data using pandas
        data = pd.read_csv(uploaded_file)
        st.write("Preview of uploaded data:")
        st.dataframe(data)

        # Tabs
        tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"])

        # LangChain Tab
        with tab1:
            st.subheader("LangChain Query")
            try:
                # Save the uploaded file to a temporary file for LangChain
                with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w") as temp_file:
                    # Write the DataFrame to the temp file
                    data.to_csv(temp_file.name, index=False)
                    temp_file_path = temp_file.name

                # Use CSVLoader with the temporary file path
                loader = CSVLoader(file_path=temp_file_path)
                docs = loader.load_and_split()

                # Preview the first document
                if docs:
                    st.write("Preview of a document chunk (LangChain):")
                    st.text(docs[0].page_content)

                # LangChain FAISS VectorStore
                langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
                langchain_vector_store = LangChainFAISS(
                    embedding_function=OpenAIEmbeddings(),
                    index=langchain_index,
                )
                langchain_vector_store.add_documents(docs)

                # LangChain Retrieval Chain
                retriever = langchain_vector_store.as_retriever()
                system_prompt = (
                    "You are an assistant for question-answering tasks. "
                    "Use the following pieces of retrieved context to answer "
                    "the question. If you don't know the answer, say that you "
                    "don't know. Use three sentences maximum and keep the "
                    "answer concise.\n\n{context}"
                )
                prompt = ChatPromptTemplate.from_messages(
                    [("system", system_prompt), ("human", "{input}")]
                )
                question_answer_chain = create_stuff_documents_chain(ChatOpenAI(), prompt)
                langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)

                # Query input for LangChain
                query = st.text_input("Ask a question about your data (LangChain):")
                if query:
                    answer = langchain_rag_chain.invoke({"input": query})
                    st.write(f"Answer: {answer['answer']}")

            except Exception as e:
                st.error(f"Error processing with LangChain: {e}")
            finally:
                # Clean up the temporary file
                if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
                    os.remove(temp_file_path)

        # LlamaIndex Tab
        with tab2:
            st.subheader("LlamaIndex Query")
            try:
                # Save uploaded file content to a temporary CSV file for LlamaIndex
                with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w") as temp_file:
                    data.to_csv(temp_file.name, index=False)
                    temp_file_path = temp_file.name

                # Use PagedCSVReader for LlamaIndex
                csv_reader = PagedCSVReader()
                reader = SimpleDirectoryReader(
                    input_files=[temp_file_path],
                    file_extractor={".csv": csv_reader},
                )
                docs = reader.load_data()

                # Preview the first document
                if docs:
                    st.write("Preview of a document chunk (LlamaIndex):")
                    st.text(docs[0].text)

                # Initialize FAISS Vector Store
                llama_faiss_index = faiss.IndexFlatL2(EMBED_DIMENSION)
                llama_vector_store = FaissVectorStore(faiss_index=llama_faiss_index)

                # Create the ingestion pipeline and process the data
                pipeline = IngestionPipeline(vector_store=llama_vector_store, documents=docs)
                nodes = pipeline.run()

                # Create a query engine
                llama_index = VectorStoreIndex(nodes)
                query_engine = llama_index.as_query_engine(similarity_top_k=3)

                # Query input for LlamaIndex
                query = st.text_input("Ask a question about your data (LlamaIndex):")
                if query:
                    response = query_engine.query(query)
                    st.write(f"Answer: {response.response}")
            except Exception as e:
                st.error(f"Error processing with LlamaIndex: {e}")
            finally:
                # Clean up the temporary file
                if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
                    os.remove(temp_file_path)
    except Exception as e:
        st.error(f"Error reading uploaded file: {e}")