Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -37,11 +37,6 @@ if uploaded_file:
|
|
37 |
st.write("Preview of uploaded data:")
|
38 |
st.dataframe(data)
|
39 |
|
40 |
-
# Create a temporary file for the uploaded CSV
|
41 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w") as temp_file:
|
42 |
-
data.to_csv(temp_file.name, index=False)
|
43 |
-
temp_file_path = temp_file.name
|
44 |
-
|
45 |
# Tabs
|
46 |
tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"])
|
47 |
|
@@ -49,6 +44,12 @@ if uploaded_file:
|
|
49 |
with tab1:
|
50 |
st.subheader("LangChain Query")
|
51 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# Use CSVLoader with the temporary file path
|
53 |
loader = CSVLoader(file_path=temp_file_path)
|
54 |
docs = loader.load_and_split()
|
@@ -78,7 +79,7 @@ if uploaded_file:
|
|
78 |
prompt = ChatPromptTemplate.from_messages(
|
79 |
[("system", system_prompt), ("human", "{input}")]
|
80 |
)
|
81 |
-
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(), prompt)
|
82 |
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
83 |
|
84 |
# Query input for LangChain
|
@@ -86,13 +87,23 @@ if uploaded_file:
|
|
86 |
if query:
|
87 |
answer = langchain_rag_chain.invoke({"input": query})
|
88 |
st.write(f"Answer: {answer['answer']}")
|
|
|
89 |
except Exception as e:
|
90 |
st.error(f"Error processing with LangChain: {e}")
|
|
|
|
|
|
|
|
|
91 |
|
92 |
# LlamaIndex Tab
|
93 |
with tab2:
|
94 |
st.subheader("LlamaIndex Query")
|
95 |
try:
|
|
|
|
|
|
|
|
|
|
|
96 |
# Use PagedCSVReader for LlamaIndex
|
97 |
csv_reader = PagedCSVReader()
|
98 |
reader = SimpleDirectoryReader(
|
|
|
37 |
st.write("Preview of uploaded data:")
|
38 |
st.dataframe(data)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
40 |
# Tabs
|
41 |
tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"])
|
42 |
|
|
|
44 |
with tab1:
|
45 |
st.subheader("LangChain Query")
|
46 |
try:
|
47 |
+
# Save the uploaded file to a temporary file for LangChain
|
48 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w") as temp_file:
|
49 |
+
# Write the DataFrame to the temp file
|
50 |
+
data.to_csv(temp_file.name, index=False)
|
51 |
+
temp_file_path = temp_file.name
|
52 |
+
|
53 |
# Use CSVLoader with the temporary file path
|
54 |
loader = CSVLoader(file_path=temp_file_path)
|
55 |
docs = loader.load_and_split()
|
|
|
79 |
prompt = ChatPromptTemplate.from_messages(
|
80 |
[("system", system_prompt), ("human", "{input}")]
|
81 |
)
|
82 |
+
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
83 |
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
84 |
|
85 |
# Query input for LangChain
|
|
|
87 |
if query:
|
88 |
answer = langchain_rag_chain.invoke({"input": query})
|
89 |
st.write(f"Answer: {answer['answer']}")
|
90 |
+
|
91 |
except Exception as e:
|
92 |
st.error(f"Error processing with LangChain: {e}")
|
93 |
+
finally:
|
94 |
+
# Clean up the temporary file
|
95 |
+
if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
|
96 |
+
os.remove(temp_file_path)
|
97 |
|
98 |
# LlamaIndex Tab
|
99 |
with tab2:
|
100 |
st.subheader("LlamaIndex Query")
|
101 |
try:
|
102 |
+
# Save uploaded file content to a temporary CSV file for LlamaIndex
|
103 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode="w") as temp_file:
|
104 |
+
data.to_csv(temp_file.name, index=False)
|
105 |
+
temp_file_path = temp_file.name
|
106 |
+
|
107 |
# Use PagedCSVReader for LlamaIndex
|
108 |
csv_reader = PagedCSVReader()
|
109 |
reader = SimpleDirectoryReader(
|