Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,17 +20,20 @@ import faiss
|
|
20 |
import tempfile
|
21 |
|
22 |
# Load environment variables
|
23 |
-
|
24 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
25 |
|
26 |
-
# Check OpenAI API Key
|
27 |
if not os.getenv("OPENAI_API_KEY"):
|
28 |
st.error("β οΈ OpenAI API Key is missing! Please check your .env file or environment variables.")
|
29 |
|
30 |
-
#
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
Settings.llm = OpenAI(model="gpt-4o")
|
33 |
-
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=
|
34 |
|
35 |
# Streamlit app
|
36 |
st.title("Chat with CSV Files - LangChain vs LlamaIndex")
|
@@ -70,25 +73,49 @@ if uploaded_file:
|
|
70 |
documents = []
|
71 |
for _, row in data.iterrows():
|
72 |
content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
|
73 |
-
doc = Document(page_content=content)
|
74 |
documents.append(doc)
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
# β
Create FAISS VectorStore
|
78 |
-
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
79 |
docstore = InMemoryDocstore()
|
80 |
index_to_docstore_id = {}
|
81 |
|
82 |
langchain_vector_store = LangChainFAISS(
|
83 |
-
embedding_function=
|
84 |
index=langchain_index,
|
85 |
docstore=docstore,
|
86 |
index_to_docstore_id=index_to_docstore_id,
|
87 |
)
|
88 |
|
89 |
-
# β
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
# β
Query Processing
|
94 |
query = st.text_input("Ask a question about your data (LangChain):")
|
@@ -101,14 +128,14 @@ if uploaded_file:
|
|
101 |
except Exception as e:
|
102 |
error_message = traceback.format_exc()
|
103 |
st.error(f"Error processing query: {e}")
|
104 |
-
st.text(error_message)
|
105 |
|
106 |
except Exception as e:
|
107 |
error_message = traceback.format_exc()
|
108 |
st.error(f"Error processing with LangChain: {e}")
|
109 |
-
st.text(error_message)
|
110 |
|
111 |
except Exception as e:
|
112 |
error_message = traceback.format_exc()
|
113 |
st.error(f"Error reading uploaded file: {e}")
|
114 |
-
st.text(error_message)
|
|
|
20 |
import tempfile
|
21 |
|
22 |
# Load environment variables
|
|
|
23 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
24 |
|
25 |
+
# β
Check OpenAI API Key
|
26 |
if not os.getenv("OPENAI_API_KEY"):
|
27 |
st.error("β οΈ OpenAI API Key is missing! Please check your .env file or environment variables.")
|
28 |
|
29 |
+
# β
Ensure OpenAI Embeddings match FAISS dimensions
|
30 |
+
embedding_function = OpenAIEmbeddings()
|
31 |
+
test_vector = embedding_function.embed_query("test") # Sample embedding
|
32 |
+
faiss_dimension = len(test_vector) # β
Dynamically detect correct dimension
|
33 |
+
|
34 |
+
# β
Update global settings for LlamaIndex
|
35 |
Settings.llm = OpenAI(model="gpt-4o")
|
36 |
+
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=faiss_dimension)
|
37 |
|
38 |
# Streamlit app
|
39 |
st.title("Chat with CSV Files - LangChain vs LlamaIndex")
|
|
|
73 |
documents = []
|
74 |
for _, row in data.iterrows():
|
75 |
content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
|
76 |
+
doc = Document(page_content=content)
|
77 |
documents.append(doc)
|
78 |
|
79 |
+
# β
Debugging: Display a sample processed document
|
80 |
+
if documents:
|
81 |
+
st.write("Sample processed document (LangChain):")
|
82 |
+
st.text(documents[0].page_content)
|
83 |
+
|
84 |
+
# β
Create FAISS VectorStore with Correct Dimensions
|
85 |
+
st.write(f"β
Initializing FAISS with dimension: {faiss_dimension}")
|
86 |
+
langchain_index = faiss.IndexFlatL2(faiss_dimension)
|
87 |
|
|
|
|
|
88 |
docstore = InMemoryDocstore()
|
89 |
index_to_docstore_id = {}
|
90 |
|
91 |
langchain_vector_store = LangChainFAISS(
|
92 |
+
embedding_function=embedding_function,
|
93 |
index=langchain_index,
|
94 |
docstore=docstore,
|
95 |
index_to_docstore_id=index_to_docstore_id,
|
96 |
)
|
97 |
|
98 |
+
# β
Ensure documents are added correctly
|
99 |
+
try:
|
100 |
+
langchain_vector_store.add_documents(documents)
|
101 |
+
st.write("β
Documents successfully added to FAISS VectorStore.")
|
102 |
+
except Exception as e:
|
103 |
+
st.error(f"Error adding documents to FAISS: {e}")
|
104 |
+
|
105 |
+
# β
Create LangChain Query Execution Pipeline
|
106 |
+
retriever = langchain_vector_store.as_retriever()
|
107 |
+
system_prompt = (
|
108 |
+
"You are an assistant for question-answering tasks. "
|
109 |
+
"Use the following pieces of retrieved context to answer "
|
110 |
+
"the question. If you don't know the answer, say that you "
|
111 |
+
"don't know. Use three sentences maximum and keep the "
|
112 |
+
"answer concise.\n\n{context}"
|
113 |
+
)
|
114 |
+
prompt = ChatPromptTemplate.from_messages(
|
115 |
+
[("system", system_prompt), ("human", "{input}")]
|
116 |
+
)
|
117 |
+
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
118 |
+
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
119 |
|
120 |
# β
Query Processing
|
121 |
query = st.text_input("Ask a question about your data (LangChain):")
|
|
|
128 |
except Exception as e:
|
129 |
error_message = traceback.format_exc()
|
130 |
st.error(f"Error processing query: {e}")
|
131 |
+
st.text(error_message)
|
132 |
|
133 |
except Exception as e:
|
134 |
error_message = traceback.format_exc()
|
135 |
st.error(f"Error processing with LangChain: {e}")
|
136 |
+
st.text(error_message)
|
137 |
|
138 |
except Exception as e:
|
139 |
error_message = traceback.format_exc()
|
140 |
st.error(f"Error reading uploaded file: {e}")
|
141 |
+
st.text(error_message)
|