Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,6 @@ from llama_index.core import Settings, VectorStoreIndex
|
|
8 |
from llama_index.llms.openai import OpenAI
|
9 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
10 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
11 |
-
from llama_index.core.ingestion import IngestionPipeline
|
12 |
from langchain_community.vectorstores import FAISS as LangChainFAISS
|
13 |
from langchain_community.docstore.in_memory import InMemoryDocstore
|
14 |
from langchain.chains import create_retrieval_chain
|
@@ -18,7 +17,6 @@ from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
18 |
from langchain_core.documents import Document
|
19 |
import faiss
|
20 |
import tempfile
|
21 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
|
23 |
# Load environment variables
|
24 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
@@ -62,17 +60,14 @@ if uploaded_file:
|
|
62 |
st.subheader("LangChain Query")
|
63 |
|
64 |
try:
|
65 |
-
# β
|
66 |
st.write("Processing CSV with a custom loader...")
|
67 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=90)
|
68 |
documents = []
|
69 |
|
70 |
for _, row in data.iterrows():
|
71 |
-
content = "
|
72 |
-
|
73 |
-
|
74 |
-
doc = Document(page_content=chunk)
|
75 |
-
documents.append(doc)
|
76 |
|
77 |
# β
Create FAISS VectorStore
|
78 |
st.write(f"β
Initializing FAISS with dimension: {faiss_dimension}")
|
@@ -96,31 +91,21 @@ if uploaded_file:
|
|
96 |
st.error(f"Error adding documents to FAISS: {e}")
|
97 |
|
98 |
# β
Limit number of retrieved documents
|
99 |
-
retriever = langchain_vector_store.as_retriever(search_kwargs={"k":
|
100 |
-
|
101 |
-
# β
Create LangChain Query Execution Pipeline
|
102 |
-
system_prompt = (
|
103 |
-
"You are an assistant for question-answering tasks. "
|
104 |
-
"Use the following pieces of retrieved context to answer "
|
105 |
-
"the question. Keep the answer concise.\n\n{context}"
|
106 |
-
)
|
107 |
-
|
108 |
-
prompt = ChatPromptTemplate.from_messages(
|
109 |
-
[("system", system_prompt), ("human", "{input}")]
|
110 |
-
)
|
111 |
-
|
112 |
-
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
113 |
-
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
114 |
|
115 |
# β
Query Processing
|
116 |
query = st.text_input("Ask a question about your data (LangChain):")
|
117 |
|
118 |
if query:
|
119 |
try:
|
120 |
-
|
|
|
121 |
retrieved_context = retrieved_context[:3000]
|
122 |
|
123 |
-
# β
|
|
|
|
|
|
|
124 |
system_prompt = (
|
125 |
"You are an assistant for question-answering tasks. "
|
126 |
"Use the following pieces of retrieved context to answer "
|
@@ -133,13 +118,9 @@ if uploaded_file:
|
|
133 |
except Exception as e:
|
134 |
error_message = traceback.format_exc()
|
135 |
st.error(f"Error processing query: {e}")
|
136 |
-
st.text(error_message)
|
137 |
|
138 |
except Exception as e:
|
139 |
error_message = traceback.format_exc()
|
140 |
st.error(f"Error processing with LangChain: {e}")
|
141 |
-
st.text(error_message)
|
142 |
-
except Exception as e:
|
143 |
-
error_message = traceback.format_exc()
|
144 |
-
st.error(f"Error reading uploaded file: {e}")
|
145 |
-
st.text(error_message) #
|
|
|
8 |
from llama_index.llms.openai import OpenAI
|
9 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
10 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
|
|
11 |
from langchain_community.vectorstores import FAISS as LangChainFAISS
|
12 |
from langchain_community.docstore.in_memory import InMemoryDocstore
|
13 |
from langchain.chains import create_retrieval_chain
|
|
|
17 |
from langchain_core.documents import Document
|
18 |
import faiss
|
19 |
import tempfile
|
|
|
20 |
|
21 |
# Load environment variables
|
22 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
|
|
60 |
st.subheader("LangChain Query")
|
61 |
|
62 |
try:
|
63 |
+
# β
Store each row as a single document
|
64 |
st.write("Processing CSV with a custom loader...")
|
|
|
65 |
documents = []
|
66 |
|
67 |
for _, row in data.iterrows():
|
68 |
+
content = " | ".join([f"{col}: {row[col]}" for col in data.columns]) # β
Store entire row as a document
|
69 |
+
doc = Document(page_content=content)
|
70 |
+
documents.append(doc)
|
|
|
|
|
71 |
|
72 |
# β
Create FAISS VectorStore
|
73 |
st.write(f"β
Initializing FAISS with dimension: {faiss_dimension}")
|
|
|
91 |
st.error(f"Error adding documents to FAISS: {e}")
|
92 |
|
93 |
# β
Limit number of retrieved documents
|
94 |
+
retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 15})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# β
Query Processing
|
97 |
query = st.text_input("Ask a question about your data (LangChain):")
|
98 |
|
99 |
if query:
|
100 |
try:
|
101 |
+
retrieved_docs = retriever.get_relevant_documents(query)
|
102 |
+
retrieved_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
|
103 |
retrieved_context = retrieved_context[:3000]
|
104 |
|
105 |
+
# β
Show retrieved context for debugging
|
106 |
+
st.write("π **Retrieved Context Preview:**")
|
107 |
+
st.text(retrieved_context)
|
108 |
+
|
109 |
system_prompt = (
|
110 |
"You are an assistant for question-answering tasks. "
|
111 |
"Use the following pieces of retrieved context to answer "
|
|
|
118 |
except Exception as e:
|
119 |
error_message = traceback.format_exc()
|
120 |
st.error(f"Error processing query: {e}")
|
121 |
+
st.text(error_message)
|
122 |
|
123 |
except Exception as e:
|
124 |
error_message = traceback.format_exc()
|
125 |
st.error(f"Error processing with LangChain: {e}")
|
126 |
+
st.text(error_message)
|
|
|
|
|
|
|
|