DrishtiSharma commited on
Commit
94cbd9b
Β·
verified Β·
1 Parent(s): af7ca67

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -32
app.py CHANGED
@@ -8,7 +8,6 @@ from llama_index.core import Settings, VectorStoreIndex
8
  from llama_index.llms.openai import OpenAI
9
  from llama_index.embeddings.openai import OpenAIEmbedding
10
  from llama_index.vector_stores.faiss import FaissVectorStore
11
- from llama_index.core.ingestion import IngestionPipeline
12
  from langchain_community.vectorstores import FAISS as LangChainFAISS
13
  from langchain_community.docstore.in_memory import InMemoryDocstore
14
  from langchain.chains import create_retrieval_chain
@@ -18,7 +17,6 @@ from langchain_openai import OpenAIEmbeddings, ChatOpenAI
18
  from langchain_core.documents import Document
19
  import faiss
20
  import tempfile
21
- from langchain.text_splitter import RecursiveCharacterTextSplitter
22
 
23
  # Load environment variables
24
  os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
@@ -62,17 +60,14 @@ if uploaded_file:
62
  st.subheader("LangChain Query")
63
 
64
  try:
65
- # βœ… Convert CSV rows into LangChain Document objects with chunking
66
  st.write("Processing CSV with a custom loader...")
67
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=90)
68
  documents = []
69
 
70
  for _, row in data.iterrows():
71
- content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
72
- chunks = text_splitter.split_text(content)
73
- for chunk in chunks:
74
- doc = Document(page_content=chunk)
75
- documents.append(doc)
76
 
77
  # βœ… Create FAISS VectorStore
78
  st.write(f"βœ… Initializing FAISS with dimension: {faiss_dimension}")
@@ -96,31 +91,21 @@ if uploaded_file:
96
  st.error(f"Error adding documents to FAISS: {e}")
97
 
98
  # βœ… Limit number of retrieved documents
99
- retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 5})
100
-
101
- # βœ… Create LangChain Query Execution Pipeline
102
- system_prompt = (
103
- "You are an assistant for question-answering tasks. "
104
- "Use the following pieces of retrieved context to answer "
105
- "the question. Keep the answer concise.\n\n{context}"
106
- )
107
-
108
- prompt = ChatPromptTemplate.from_messages(
109
- [("system", system_prompt), ("human", "{input}")]
110
- )
111
-
112
- question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
113
- langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
114
 
115
  # βœ… Query Processing
116
  query = st.text_input("Ask a question about your data (LangChain):")
117
 
118
  if query:
119
  try:
120
- retrieved_context = "\n\n".join([doc.page_content for doc in retriever.get_relevant_documents(query)])
 
121
  retrieved_context = retrieved_context[:3000]
122
 
123
- # βœ… Ensure that we use the retrieved context
 
 
 
124
  system_prompt = (
125
  "You are an assistant for question-answering tasks. "
126
  "Use the following pieces of retrieved context to answer "
@@ -133,13 +118,9 @@ if uploaded_file:
133
  except Exception as e:
134
  error_message = traceback.format_exc()
135
  st.error(f"Error processing query: {e}")
136
- st.text(error_message)
137
 
138
  except Exception as e:
139
  error_message = traceback.format_exc()
140
  st.error(f"Error processing with LangChain: {e}")
141
- st.text(error_message)
142
- except Exception as e:
143
- error_message = traceback.format_exc()
144
- st.error(f"Error reading uploaded file: {e}")
145
- st.text(error_message) #
 
8
  from llama_index.llms.openai import OpenAI
9
  from llama_index.embeddings.openai import OpenAIEmbedding
10
  from llama_index.vector_stores.faiss import FaissVectorStore
 
11
  from langchain_community.vectorstores import FAISS as LangChainFAISS
12
  from langchain_community.docstore.in_memory import InMemoryDocstore
13
  from langchain.chains import create_retrieval_chain
 
17
  from langchain_core.documents import Document
18
  import faiss
19
  import tempfile
 
20
 
21
  # Load environment variables
22
  os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
 
60
  st.subheader("LangChain Query")
61
 
62
  try:
63
+ # βœ… Store each row as a single document
64
  st.write("Processing CSV with a custom loader...")
 
65
  documents = []
66
 
67
  for _, row in data.iterrows():
68
+ content = " | ".join([f"{col}: {row[col]}" for col in data.columns]) # βœ… Store entire row as a document
69
+ doc = Document(page_content=content)
70
+ documents.append(doc)
 
 
71
 
72
  # βœ… Create FAISS VectorStore
73
  st.write(f"βœ… Initializing FAISS with dimension: {faiss_dimension}")
 
91
  st.error(f"Error adding documents to FAISS: {e}")
92
 
93
  # βœ… Limit number of retrieved documents
94
+ retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 15})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
 
96
  # βœ… Query Processing
97
  query = st.text_input("Ask a question about your data (LangChain):")
98
 
99
  if query:
100
  try:
101
+ retrieved_docs = retriever.get_relevant_documents(query)
102
+ retrieved_context = "\n\n".join([doc.page_content for doc in retrieved_docs])
103
  retrieved_context = retrieved_context[:3000]
104
 
105
+ # βœ… Show retrieved context for debugging
106
+ st.write("πŸ” **Retrieved Context Preview:**")
107
+ st.text(retrieved_context)
108
+
109
  system_prompt = (
110
  "You are an assistant for question-answering tasks. "
111
  "Use the following pieces of retrieved context to answer "
 
118
  except Exception as e:
119
  error_message = traceback.format_exc()
120
  st.error(f"Error processing query: {e}")
121
+ st.text(error_message)
122
 
123
  except Exception as e:
124
  error_message = traceback.format_exc()
125
  st.error(f"Error processing with LangChain: {e}")
126
+ st.text(error_message)