Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
18 |
from langchain_core.documents import Document
|
19 |
import faiss
|
20 |
import tempfile
|
|
|
21 |
|
22 |
# Load environment variables
|
23 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
@@ -28,8 +29,8 @@ if not os.getenv("OPENAI_API_KEY"):
|
|
28 |
|
29 |
# β
Ensure OpenAI Embeddings match FAISS dimensions
|
30 |
embedding_function = OpenAIEmbeddings()
|
31 |
-
test_vector = embedding_function.embed_query("test")
|
32 |
-
faiss_dimension = len(test_vector)
|
33 |
|
34 |
# β
Update global settings for LlamaIndex
|
35 |
Settings.llm = OpenAI(model="gpt-4o")
|
@@ -53,31 +54,27 @@ if uploaded_file:
|
|
53 |
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
54 |
temp_file.flush()
|
55 |
|
56 |
-
# Debugging: Verify the temporary file (Display partial content)
|
57 |
-
st.write("Temporary file path:", temp_file_path)
|
58 |
-
with open(temp_file_path, "r") as f:
|
59 |
-
content = f.read()
|
60 |
-
st.write("Partial file content (first 500 characters):")
|
61 |
-
st.text(content[:500])
|
62 |
-
|
63 |
# Tabs for LangChain and LlamaIndex
|
64 |
-
tab1, tab2 = st.tabs(["LangChain", "LlamaIndex"])
|
65 |
|
66 |
# β
LangChain Processing
|
67 |
with tab1:
|
68 |
st.subheader("LangChain Query")
|
69 |
|
70 |
try:
|
71 |
-
# β
Convert CSV rows into LangChain Document objects
|
72 |
st.write("Processing CSV with a custom loader...")
|
|
|
73 |
documents = []
|
|
|
74 |
for _, row in data.iterrows():
|
75 |
content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
# β
Create FAISS VectorStore with Correct Dimensions
|
81 |
st.write(f"β
Initializing FAISS with dimension: {faiss_dimension}")
|
82 |
langchain_index = faiss.IndexFlatL2(faiss_dimension)
|
83 |
|
@@ -98,27 +95,24 @@ if uploaded_file:
|
|
98 |
except Exception as e:
|
99 |
st.error(f"Error adding documents to FAISS: {e}")
|
100 |
|
101 |
-
# β
|
102 |
-
retriever = langchain_vector_store.as_retriever()
|
103 |
-
system_prompt = (
|
104 |
-
"You are an assistant for question-answering tasks. "
|
105 |
-
"Use the following pieces of retrieved context to answer "
|
106 |
-
"the question. If you don't know the answer, say that you "
|
107 |
-
"don't know. Use three sentences maximum and keep the "
|
108 |
-
"answer concise.\n\n{context}"
|
109 |
-
)
|
110 |
-
prompt = ChatPromptTemplate.from_messages(
|
111 |
-
[("system", system_prompt), ("human", "{input}")]
|
112 |
-
)
|
113 |
-
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
114 |
-
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
115 |
|
116 |
# β
Query Processing
|
117 |
query = st.text_input("Ask a question about your data (LangChain):")
|
118 |
|
119 |
if query:
|
120 |
try:
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
answer = langchain_rag_chain.invoke({"input": query})
|
123 |
st.write(f"**Answer:** {answer['answer']}")
|
124 |
except Exception as e:
|
@@ -130,8 +124,3 @@ if uploaded_file:
|
|
130 |
error_message = traceback.format_exc()
|
131 |
st.error(f"Error processing with LangChain: {e}")
|
132 |
st.text(error_message)
|
133 |
-
|
134 |
-
except Exception as e:
|
135 |
-
error_message = traceback.format_exc()
|
136 |
-
st.error(f"Error reading uploaded file: {e}")
|
137 |
-
st.text(error_message)
|
|
|
18 |
from langchain_core.documents import Document
|
19 |
import faiss
|
20 |
import tempfile
|
21 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
22 |
|
23 |
# Load environment variables
|
24 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
|
|
29 |
|
30 |
# β
Ensure OpenAI Embeddings match FAISS dimensions
|
31 |
embedding_function = OpenAIEmbeddings()
|
32 |
+
test_vector = embedding_function.embed_query("test")
|
33 |
+
faiss_dimension = len(test_vector)
|
34 |
|
35 |
# β
Update global settings for LlamaIndex
|
36 |
Settings.llm = OpenAI(model="gpt-4o")
|
|
|
54 |
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
55 |
temp_file.flush()
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
# Tabs for LangChain and LlamaIndex
|
58 |
+
tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"])
|
59 |
|
60 |
# β
LangChain Processing
|
61 |
with tab1:
|
62 |
st.subheader("LangChain Query")
|
63 |
|
64 |
try:
|
65 |
+
# β
Convert CSV rows into LangChain Document objects with chunking
|
66 |
st.write("Processing CSV with a custom loader...")
|
67 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=90)
|
68 |
documents = []
|
69 |
+
|
70 |
for _, row in data.iterrows():
|
71 |
content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
|
72 |
+
chunks = text_splitter.split_text(content)
|
73 |
+
for chunk in chunks:
|
74 |
+
doc = Document(page_content=chunk)
|
75 |
+
documents.append(doc)
|
76 |
|
77 |
+
# β
Create FAISS VectorStore
|
|
|
78 |
st.write(f"β
Initializing FAISS with dimension: {faiss_dimension}")
|
79 |
langchain_index = faiss.IndexFlatL2(faiss_dimension)
|
80 |
|
|
|
95 |
except Exception as e:
|
96 |
st.error(f"Error adding documents to FAISS: {e}")
|
97 |
|
98 |
+
# β
Limit number of retrieved documents
|
99 |
+
retriever = langchain_vector_store.as_retriever(search_kwargs={"k": 5})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# β
Query Processing
|
102 |
query = st.text_input("Ask a question about your data (LangChain):")
|
103 |
|
104 |
if query:
|
105 |
try:
|
106 |
+
retrieved_context = "\n\n".join([doc.page_content for doc in retriever.get_relevant_documents(query)])
|
107 |
+
retrieved_context = retrieved_context[:3000]
|
108 |
+
|
109 |
+
system_prompt = (
|
110 |
+
"You are an assistant for question-answering tasks. "
|
111 |
+
"Use the following pieces of retrieved context to answer "
|
112 |
+
"the question. Keep the answer concise.\n\n"
|
113 |
+
f"{retrieved_context}"
|
114 |
+
)
|
115 |
+
|
116 |
answer = langchain_rag_chain.invoke({"input": query})
|
117 |
st.write(f"**Answer:** {answer['answer']}")
|
118 |
except Exception as e:
|
|
|
124 |
error_message = traceback.format_exc()
|
125 |
st.error(f"Error processing with LangChain: {e}")
|
126 |
st.text(error_message)
|
|
|
|
|
|
|
|
|
|