Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ from langchain.chains import create_retrieval_chain
|
|
14 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
15 |
from langchain_core.prompts import ChatPromptTemplate
|
16 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
|
17 |
import faiss
|
18 |
import tempfile
|
19 |
|
@@ -44,7 +45,7 @@ if uploaded_file:
|
|
44 |
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
45 |
temp_file.flush()
|
46 |
|
47 |
-
#
|
48 |
st.write("Temporary file path:", temp_file_path)
|
49 |
with open(temp_file_path, "r") as f:
|
50 |
content = f.read()
|
@@ -54,35 +55,35 @@ if uploaded_file:
|
|
54 |
# Tabs for LangChain and LlamaIndex
|
55 |
tab1, tab2 = st.tabs(["LangChain", "LlamaIndex"])
|
56 |
|
57 |
-
# LangChain
|
58 |
with tab1:
|
59 |
st.subheader("LangChain Query")
|
|
|
60 |
try:
|
61 |
-
#
|
62 |
st.write("Processing CSV with a custom loader...")
|
63 |
documents = []
|
64 |
for _, row in data.iterrows():
|
65 |
content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
|
66 |
-
|
67 |
-
|
68 |
-
# Debugging: Preview loaded documents
|
69 |
-
#st.write("Successfully processed documents:")
|
70 |
-
#if documents:
|
71 |
-
# st.text(documents[0]["page_content"])
|
72 |
|
73 |
-
# Create FAISS VectorStore with proper arguments
|
74 |
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
75 |
-
docstore = InMemoryDocstore() #
|
76 |
index_to_docstore_id = {} # Mapping of index to document ID
|
|
|
77 |
langchain_vector_store = LangChainFAISS(
|
78 |
embedding_function=OpenAIEmbeddings(),
|
79 |
index=langchain_index,
|
80 |
docstore=docstore,
|
81 |
index_to_docstore_id=index_to_docstore_id,
|
82 |
)
|
|
|
|
|
83 |
langchain_vector_store.add_documents(documents)
|
84 |
|
85 |
-
# LangChain Retrieval Chain
|
86 |
retriever = langchain_vector_store.as_retriever()
|
87 |
system_prompt = (
|
88 |
"You are an assistant for question-answering tasks. "
|
@@ -97,47 +98,56 @@ if uploaded_file:
|
|
97 |
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
98 |
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
99 |
|
100 |
-
# Query
|
101 |
query = st.text_input("Ask a question about your data (LangChain):")
|
|
|
102 |
if query:
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
105 |
except Exception as e:
|
106 |
st.error(f"Error processing with LangChain: {e}")
|
107 |
|
108 |
-
# LlamaIndex
|
109 |
with tab2:
|
110 |
st.subheader("LlamaIndex Query")
|
|
|
111 |
try:
|
112 |
-
# Use PagedCSVReader
|
113 |
st.write("Loading file with LlamaIndex PagedCSVReader...")
|
114 |
csv_reader = PagedCSVReader()
|
115 |
docs = csv_reader.load_from_file(temp_file_path)
|
116 |
|
117 |
-
#
|
118 |
-
st.write("Successfully loaded documents:")
|
119 |
-
if docs:
|
120 |
-
st.text(docs[0].text)
|
121 |
-
|
122 |
-
# Initialize FAISS Vector Store
|
123 |
llama_faiss_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
124 |
llama_vector_store = FaissVectorStore(faiss_index=llama_faiss_index)
|
125 |
|
126 |
-
# Create
|
127 |
pipeline = IngestionPipeline(vector_store=llama_vector_store, documents=docs)
|
128 |
nodes = pipeline.run()
|
129 |
|
130 |
-
# Create a query engine
|
131 |
llama_index = VectorStoreIndex(nodes)
|
132 |
query_engine = llama_index.as_query_engine(similarity_top_k=3)
|
133 |
|
134 |
-
# Query
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
except Exception as e:
|
140 |
st.error(f"Error processing with LlamaIndex: {e}")
|
|
|
141 |
finally:
|
142 |
# Clean up the temporary file
|
143 |
if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
|
|
|
14 |
from langchain.chains.combine_documents import create_stuff_documents_chain
|
15 |
from langchain_core.prompts import ChatPromptTemplate
|
16 |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
17 |
+
from langchain_core.documents import Document # β
FIX: Import LangChain Document
|
18 |
import faiss
|
19 |
import tempfile
|
20 |
|
|
|
45 |
data.to_csv(temp_file.name, index=False, encoding="utf-8")
|
46 |
temp_file.flush()
|
47 |
|
48 |
+
# Verify the temporary file (Display partial content)
|
49 |
st.write("Temporary file path:", temp_file_path)
|
50 |
with open(temp_file_path, "r") as f:
|
51 |
content = f.read()
|
|
|
55 |
# Tabs for LangChain and LlamaIndex
|
56 |
tab1, tab2 = st.tabs(["LangChain", "LlamaIndex"])
|
57 |
|
58 |
+
# β
LangChain Processing with Proper Document Format
|
59 |
with tab1:
|
60 |
st.subheader("LangChain Query")
|
61 |
+
|
62 |
try:
|
63 |
+
# β
Convert CSV rows into LangChain Document objects (Fix for `dict` error)
|
64 |
st.write("Processing CSV with a custom loader...")
|
65 |
documents = []
|
66 |
for _, row in data.iterrows():
|
67 |
content = "\n".join([f"{col}: {row[col]}" for col in data.columns])
|
68 |
+
doc = Document(page_content=content) # Convert to Document object
|
69 |
+
documents.append(doc) # Append to list
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# β
Create FAISS VectorStore with proper arguments
|
72 |
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
73 |
+
docstore = InMemoryDocstore() # In-memory storage for documents
|
74 |
index_to_docstore_id = {} # Mapping of index to document ID
|
75 |
+
|
76 |
langchain_vector_store = LangChainFAISS(
|
77 |
embedding_function=OpenAIEmbeddings(),
|
78 |
index=langchain_index,
|
79 |
docstore=docstore,
|
80 |
index_to_docstore_id=index_to_docstore_id,
|
81 |
)
|
82 |
+
|
83 |
+
# β
Add properly formatted documents to FAISS
|
84 |
langchain_vector_store.add_documents(documents)
|
85 |
|
86 |
+
# β
LangChain Retrieval Chain
|
87 |
retriever = langchain_vector_store.as_retriever()
|
88 |
system_prompt = (
|
89 |
"You are an assistant for question-answering tasks. "
|
|
|
98 |
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(model="gpt-4o"), prompt)
|
99 |
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
100 |
|
101 |
+
# β
Query Input Field for LangChain
|
102 |
query = st.text_input("Ask a question about your data (LangChain):")
|
103 |
+
|
104 |
if query:
|
105 |
+
try:
|
106 |
+
st.write("Processing your question...")
|
107 |
+
answer = langchain_rag_chain.invoke({"input": query})
|
108 |
+
st.write(f"**Answer:** {answer['answer']}")
|
109 |
+
except Exception as e:
|
110 |
+
st.error(f"Error processing query: {e}")
|
111 |
+
|
112 |
except Exception as e:
|
113 |
st.error(f"Error processing with LangChain: {e}")
|
114 |
|
115 |
+
# β
LlamaIndex Processing
|
116 |
with tab2:
|
117 |
st.subheader("LlamaIndex Query")
|
118 |
+
|
119 |
try:
|
120 |
+
# Use PagedCSVReader to load CSV
|
121 |
st.write("Loading file with LlamaIndex PagedCSVReader...")
|
122 |
csv_reader = PagedCSVReader()
|
123 |
docs = csv_reader.load_from_file(temp_file_path)
|
124 |
|
125 |
+
# β
Create FAISS Vector Store
|
|
|
|
|
|
|
|
|
|
|
126 |
llama_faiss_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
127 |
llama_vector_store = FaissVectorStore(faiss_index=llama_faiss_index)
|
128 |
|
129 |
+
# β
Create ingestion pipeline and process data
|
130 |
pipeline = IngestionPipeline(vector_store=llama_vector_store, documents=docs)
|
131 |
nodes = pipeline.run()
|
132 |
|
133 |
+
# β
Create a query engine
|
134 |
llama_index = VectorStoreIndex(nodes)
|
135 |
query_engine = llama_index.as_query_engine(similarity_top_k=3)
|
136 |
|
137 |
+
# β
Query Input Field for LlamaIndex
|
138 |
+
query_llama = st.text_input("Ask a question about your data (LlamaIndex):")
|
139 |
+
|
140 |
+
if query_llama:
|
141 |
+
try:
|
142 |
+
st.write("Processing your question...")
|
143 |
+
response = query_engine.query(query_llama)
|
144 |
+
st.write(f"**Answer:** {response.response}")
|
145 |
+
except Exception as e:
|
146 |
+
st.error(f"Error processing query: {e}")
|
147 |
+
|
148 |
except Exception as e:
|
149 |
st.error(f"Error processing with LlamaIndex: {e}")
|
150 |
+
|
151 |
finally:
|
152 |
# Clean up the temporary file
|
153 |
if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
|