Spaces:
Sleeping
Sleeping
Update lab/app.py
Browse files- lab/app.py +6 -4
lab/app.py
CHANGED
@@ -3,7 +3,8 @@ import pandas as pd
|
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
5 |
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
6 |
-
from llama_index.readers.
|
|
|
7 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
8 |
from llama_index.llms.openai import OpenAI
|
9 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
@@ -18,6 +19,7 @@ import faiss
|
|
18 |
|
19 |
# Load environment variables
|
20 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
|
|
21 |
|
22 |
# Global settings for LlamaIndex
|
23 |
EMBED_DIMENSION = 512
|
@@ -25,7 +27,7 @@ Settings.llm = OpenAI(model="gpt-3.5-turbo")
|
|
25 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION)
|
26 |
|
27 |
# Streamlit app
|
28 |
-
st.title("
|
29 |
|
30 |
# File uploader
|
31 |
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
@@ -108,7 +110,7 @@ if uploaded_file:
|
|
108 |
|
109 |
# Create a query engine
|
110 |
llama_index = VectorStoreIndex(nodes)
|
111 |
-
query_engine = llama_index.as_query_engine(similarity_top_k=
|
112 |
|
113 |
# Query input for LlamaIndex
|
114 |
query = st.text_input("Ask a question about your data (LlamaIndex):")
|
@@ -117,4 +119,4 @@ if uploaded_file:
|
|
117 |
st.write(f"Answer: {response.response}")
|
118 |
|
119 |
# Cleanup temporary file
|
120 |
-
os.remove(temp_file_path)
|
|
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
5 |
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
6 |
+
from llama_index.core.readers.base import BaseReader
|
7 |
+
from llama_index.readers.file.paged_csv.base import PagedCSVReader
|
8 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
9 |
from llama_index.llms.openai import OpenAI
|
10 |
from llama_index.vector_stores.faiss import FaissVectorStore
|
|
|
19 |
|
20 |
# Load environment variables
|
21 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
22 |
+
#os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
23 |
|
24 |
# Global settings for LlamaIndex
|
25 |
EMBED_DIMENSION = 512
|
|
|
27 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION)
|
28 |
|
29 |
# Streamlit app
|
30 |
+
st.title("Chat w CSV Files - LangChain Vs LlamaIndex ")
|
31 |
|
32 |
# File uploader
|
33 |
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
|
|
110 |
|
111 |
# Create a query engine
|
112 |
llama_index = VectorStoreIndex(nodes)
|
113 |
+
query_engine = llama_index.as_query_engine(similarity_top_k=3)
|
114 |
|
115 |
# Query input for LlamaIndex
|
116 |
query = st.text_input("Ask a question about your data (LlamaIndex):")
|
|
|
119 |
st.write(f"Answer: {response.response}")
|
120 |
|
121 |
# Cleanup temporary file
|
122 |
+
os.remove(temp_file_path)
|