DrishtiSharma commited on
Commit
db63591
·
verified ·
1 Parent(s): b8c2fc4

Update lab/app.py

Browse files
Files changed (1) hide show
  1. lab/app.py +6 -4
lab/app.py CHANGED
@@ -3,7 +3,8 @@ import pandas as pd
3
  import os
4
  from dotenv import load_dotenv
5
  from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
6
- from llama_index.readers.file import PagedCSVReader
 
7
  from llama_index.embeddings.openai import OpenAIEmbedding
8
  from llama_index.llms.openai import OpenAI
9
  from llama_index.vector_stores.faiss import FaissVectorStore
@@ -18,6 +19,7 @@ import faiss
18
 
19
  # Load environment variables
20
  os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
 
21
 
22
  # Global settings for LlamaIndex
23
  EMBED_DIMENSION = 512
@@ -25,7 +27,7 @@ Settings.llm = OpenAI(model="gpt-3.5-turbo")
25
  Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION)
26
 
27
  # Streamlit app
28
- st.title("Streamlit App with LangChain and LlamaIndex")
29
 
30
  # File uploader
31
  uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
@@ -108,7 +110,7 @@ if uploaded_file:
108
 
109
  # Create a query engine
110
  llama_index = VectorStoreIndex(nodes)
111
- query_engine = llama_index.as_query_engine(similarity_top_k=2)
112
 
113
  # Query input for LlamaIndex
114
  query = st.text_input("Ask a question about your data (LlamaIndex):")
@@ -117,4 +119,4 @@ if uploaded_file:
117
  st.write(f"Answer: {response.response}")
118
 
119
  # Cleanup temporary file
120
- os.remove(temp_file_path)
 
3
  import os
4
  from dotenv import load_dotenv
5
  from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
6
+ from llama_index.core.readers.base import BaseReader
7
+ from llama_index.readers.file.paged_csv.base import PagedCSVReader
8
  from llama_index.embeddings.openai import OpenAIEmbedding
9
  from llama_index.llms.openai import OpenAI
10
  from llama_index.vector_stores.faiss import FaissVectorStore
 
19
 
20
  # Load environment variables
21
  os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
22
+ #os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
23
 
24
  # Global settings for LlamaIndex
25
  EMBED_DIMENSION = 512
 
27
  Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION)
28
 
29
  # Streamlit app
30
+ st.title("Chat w CSV Files - LangChain Vs LlamaIndex ")
31
 
32
  # File uploader
33
  uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
 
110
 
111
  # Create a query engine
112
  llama_index = VectorStoreIndex(nodes)
113
+ query_engine = llama_index.as_query_engine(similarity_top_k=3)
114
 
115
  # Query input for LlamaIndex
116
  query = st.text_input("Ask a question about your data (LlamaIndex):")
 
119
  st.write(f"Answer: {response.response}")
120
 
121
  # Cleanup temporary file
122
+ os.remove(temp_file_path)