Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
3 |
import os
|
4 |
from dotenv import load_dotenv
|
5 |
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
@@ -18,6 +19,7 @@ from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
|
18 |
import faiss
|
19 |
|
20 |
# Load environment variables
|
|
|
21 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
22 |
|
23 |
# Global settings for LlamaIndex
|
@@ -26,96 +28,99 @@ Settings.llm = OpenAI(model="gpt-3.5-turbo")
|
|
26 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION)
|
27 |
|
28 |
# Streamlit app
|
29 |
-
st.title("Chat
|
30 |
|
31 |
# File uploader
|
32 |
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
33 |
if uploaded_file:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
+
import io
|
4 |
import os
|
5 |
from dotenv import load_dotenv
|
6 |
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
|
|
19 |
import faiss
|
20 |
|
21 |
# Load environment variables
|
22 |
+
load_dotenv()
|
23 |
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
24 |
|
25 |
# Global settings for LlamaIndex
|
|
|
28 |
Settings.embed_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION)
|
29 |
|
30 |
# Streamlit app
|
31 |
+
st.title("Chat with CSV Files - LangChain vs LlamaIndex")
|
32 |
|
33 |
# File uploader
|
34 |
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
35 |
if uploaded_file:
|
36 |
+
try:
|
37 |
+
# Load and preview CSV data using pandas
|
38 |
+
data = pd.read_csv(uploaded_file)
|
39 |
+
st.write("Preview of uploaded data:")
|
40 |
+
st.dataframe(data)
|
41 |
+
|
42 |
+
# Tabs
|
43 |
+
tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"])
|
44 |
+
|
45 |
+
# LangChain Tab
|
46 |
+
with tab1:
|
47 |
+
st.subheader("LangChain Query")
|
48 |
+
try:
|
49 |
+
# Use CSVLoader directly with file-like object
|
50 |
+
loader = CSVLoader(file_path=io.BytesIO(uploaded_file.getvalue()))
|
51 |
+
docs = loader.load_and_split()
|
52 |
+
|
53 |
+
# Preview the first document
|
54 |
+
if docs:
|
55 |
+
st.write("Preview of a document chunk (LangChain):")
|
56 |
+
st.text(docs[0].page_content)
|
57 |
+
|
58 |
+
# LangChain FAISS VectorStore
|
59 |
+
langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
60 |
+
langchain_vector_store = LangChainFAISS(
|
61 |
+
embedding_function=OpenAIEmbeddings(),
|
62 |
+
index=langchain_index,
|
63 |
+
)
|
64 |
+
langchain_vector_store.add_documents(docs)
|
65 |
+
|
66 |
+
# LangChain Retrieval Chain
|
67 |
+
retriever = langchain_vector_store.as_retriever()
|
68 |
+
system_prompt = (
|
69 |
+
"You are an assistant for question-answering tasks. "
|
70 |
+
"Use the following pieces of retrieved context to answer "
|
71 |
+
"the question. If you don't know the answer, say that you "
|
72 |
+
"don't know. Use three sentences maximum and keep the "
|
73 |
+
"answer concise.\n\n{context}"
|
74 |
+
)
|
75 |
+
prompt = ChatPromptTemplate.from_messages(
|
76 |
+
[("system", system_prompt), ("human", "{input}")]
|
77 |
+
)
|
78 |
+
question_answer_chain = create_stuff_documents_chain(ChatOpenAI(), prompt)
|
79 |
+
langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain)
|
80 |
+
|
81 |
+
# Query input for LangChain
|
82 |
+
query = st.text_input("Ask a question about your data (LangChain):")
|
83 |
+
if query:
|
84 |
+
answer = langchain_rag_chain.invoke({"input": query})
|
85 |
+
st.write(f"Answer: {answer['answer']}")
|
86 |
+
except Exception as e:
|
87 |
+
st.error(f"Error processing with LangChain: {e}")
|
88 |
+
|
89 |
+
# LlamaIndex Tab
|
90 |
+
with tab2:
|
91 |
+
st.subheader("LlamaIndex Query")
|
92 |
+
try:
|
93 |
+
# Use PagedCSVReader for LlamaIndex
|
94 |
+
csv_reader = PagedCSVReader()
|
95 |
+
reader = SimpleDirectoryReader(
|
96 |
+
input_files=[uploaded_file.name],
|
97 |
+
file_extractor={".csv": csv_reader},
|
98 |
+
)
|
99 |
+
docs = reader.load_data()
|
100 |
+
|
101 |
+
# Preview the first document
|
102 |
+
if docs:
|
103 |
+
st.write("Preview of a document chunk (LlamaIndex):")
|
104 |
+
st.text(docs[0].text)
|
105 |
+
|
106 |
+
# Initialize FAISS Vector Store
|
107 |
+
llama_faiss_index = faiss.IndexFlatL2(EMBED_DIMENSION)
|
108 |
+
llama_vector_store = FaissVectorStore(faiss_index=llama_faiss_index)
|
109 |
+
|
110 |
+
# Create the ingestion pipeline and process the data
|
111 |
+
pipeline = IngestionPipeline(vector_store=llama_vector_store, documents=docs)
|
112 |
+
nodes = pipeline.run()
|
113 |
+
|
114 |
+
# Create a query engine
|
115 |
+
llama_index = VectorStoreIndex(nodes)
|
116 |
+
query_engine = llama_index.as_query_engine(similarity_top_k=3)
|
117 |
+
|
118 |
+
# Query input for LlamaIndex
|
119 |
+
query = st.text_input("Ask a question about your data (LlamaIndex):")
|
120 |
+
if query:
|
121 |
+
response = query_engine.query(query)
|
122 |
+
st.write(f"Answer: {response.response}")
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Error processing with LlamaIndex: {e}")
|
125 |
+
except Exception as e:
|
126 |
+
st.error(f"Error reading uploaded file: {e}")
|