import streamlit as st import pandas as pd import os from dotenv import load_dotenv from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.readers.file import PagedCSVReader from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.llms.openai import OpenAI from llama_index.vector_stores.faiss import FaissVectorStore from llama_index.core.ingestion import IngestionPipeline from langchain_community.document_loaders.csv_loader import CSVLoader from langchain_community.vectorstores import FAISS as LangChainFAISS from langchain.chains import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain_openai import OpenAIEmbeddings, ChatOpenAI import faiss # Load environment variables os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") # Global OpenAI and FAISS settings EMBED_DIMENSION = 512 llama_llm = OpenAI(model="gpt-3.5-turbo") llama_embedding_model = OpenAIEmbedding(model="text-embedding-3-small", dimensions=EMBED_DIMENSION) langchain_llm = ChatOpenAI(model="gpt-3.5-turbo-0125") # Streamlit app st.title("Streamlit App with LangChain and LlamaIndex") # File uploader uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"]) if uploaded_file: data = pd.read_csv(uploaded_file) st.write("Preview of uploaded data:") st.dataframe(data) # Tabs tab1, tab2 = st.tabs(["Chat w CSV using LangChain", "Chat w CSV using LlamaIndex"]) # LangChain Tab with tab1: st.subheader("LangChain Query") loader = CSVLoader(file_path=uploaded_file.name) docs = loader.load_and_split() # Preview the first document st.write("Preview of a document chunk (LangChain):") st.text(docs[0].page_content) # LangChain FAISS VectorStore langchain_index = faiss.IndexFlatL2(EMBED_DIMENSION) langchain_vector_store = LangChainFAISS( embedding_function=OpenAIEmbeddings(), index=langchain_index, ) langchain_vector_store.add_documents(docs) # LangChain Retrieval Chain retriever = langchain_vector_store.as_retriever() system_prompt = ( "You are an assistant for question-answering tasks. " "Use the following pieces of retrieved context to answer " "the question. If you don't know the answer, say that you " "don't know. Use three sentences maximum and keep the " "answer concise.\n\n{context}" ) prompt = ChatPromptTemplate.from_messages( [("system", system_prompt), ("human", "{input}")] ) question_answer_chain = create_stuff_documents_chain(langchain_llm, prompt) langchain_rag_chain = create_retrieval_chain(retriever, question_answer_chain) # Query input for LangChain query = st.text_input("Ask a question about your data (LangChain):") if query: answer = langchain_rag_chain.invoke({"input": query}) st.write(f"Answer: {answer['answer']}") # LlamaIndex Tab with tab2: st.subheader("LlamaIndex Query") # Use PagedCSVReader for CSV loading csv_reader = PagedCSVReader() reader = SimpleDirectoryReader( input_files=[uploaded_file.name], file_extractor={".csv": csv_reader}, ) docs = reader.load_data() # Preview the first document st.write("Preview of a document chunk (LlamaIndex):") st.text(docs[0].text) # Initialize FAISS Vector Store llama_faiss_index = faiss.IndexFlatL2(EMBED_DIMENSION) llama_vector_store = FaissVectorStore(faiss_index=llama_faiss_index) # Create the ingestion pipeline and process the data pipeline = IngestionPipeline(vector_store=llama_vector_store, documents=docs) nodes = pipeline.run() # Create a query engine llama_index = VectorStoreIndex(nodes) query_engine = llama_index.as_query_engine(similarity_top_k=2) # Query input for LlamaIndex query = st.text_input("Ask a question about your data (LlamaIndex):") if query: response = query_engine.query(query) st.write(f"Answer: {response.response}")