Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import os | |
from pandasai import SmartDataframe | |
from pandasai.llm import OpenAI | |
import tempfile | |
import matplotlib.pyplot as plt | |
from datasets import load_dataset | |
from langchain_groq import ChatGroq | |
from langchain_openai import ChatOpenAI | |
import time | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
def chat_with_csv(df, prompt): | |
llm = OpenAI(api_token=openai_api_key) | |
pandas_ai = PandasAI(llm) | |
result = pandas_ai.run(df, prompt=prompt) | |
return result | |
def load_huggingface_dataset(dataset_name): | |
progress_bar = st.progress(0) | |
try: | |
progress_bar.progress(10) | |
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True) | |
progress_bar.progress(50) | |
if hasattr(dataset, "to_pandas"): | |
df = dataset.to_pandas() | |
else: | |
df = pd.DataFrame(dataset) | |
progress_bar.progress(100) | |
return df | |
except Exception as e: | |
progress_bar.progress(0) | |
raise e | |
def load_uploaded_csv(uploaded_file): | |
progress_bar = st.progress(0) | |
try: | |
progress_bar.progress(10) | |
time.sleep(1) | |
progress_bar.progress(50) | |
df = pd.read_csv(uploaded_file) | |
progress_bar.progress(100) | |
return df | |
except Exception as e: | |
progress_bar.progress(0) | |
raise e | |
def load_dataset_into_session(): | |
input_option = st.radio( | |
"Select Dataset Input:", | |
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], | |
index=1, | |
horizontal=True | |
) | |
if input_option == "Use Repo Directory Dataset": | |
file_path = "./source/test.csv" | |
if st.button("Load Dataset"): | |
try: | |
with st.spinner("Loading dataset from the repo directory..."): | |
st.session_state.df = pd.read_csv(file_path) | |
st.success(f"File loaded successfully from '{file_path}'!") | |
except Exception as e: | |
st.error(f"Error loading dataset from the repo directory: {e}") | |
elif input_option == "Use Hugging Face Dataset": | |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") | |
if st.button("Load Dataset"): | |
try: | |
st.session_state.df = load_huggingface_dataset(dataset_name) | |
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!") | |
except Exception as e: | |
st.error(f"Error loading Hugging Face dataset: {e}") | |
elif input_option == "Upload CSV File": | |
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"]) | |
if uploaded_file: | |
try: | |
st.session_state.df = load_uploaded_csv(uploaded_file) | |
st.success("File uploaded successfully!") | |
except Exception as e: | |
st.error(f"Error reading uploaded file: {e}") | |
# Streamlit app main | |
st.set_page_config(layout='wide') | |
st.title("ChatCSV powered by LLM") | |
# Ensure session state for the dataframe | |
if "df" not in st.session_state: | |
st.session_state.df = pd.DataFrame() # Initialize with an empty dataframe | |
st.header("Load Your Dataset") | |
load_dataset_into_session() | |
if not st.session_state.df.empty: | |
st.subheader("Dataset Preview") | |
st.dataframe(st.session_state.df, use_container_width=True) | |
st.subheader("Chat with Your Dataset") | |
user_query = st.text_area("Enter your query:") | |
if st.button("Run Query"): | |
if user_query.strip(): | |
with st.spinner("Processing your query..."): | |
try: | |
result = chat_with_csv(st.session_state.df, user_query) | |
st.success(result) | |
except Exception as e: | |
st.error(f"Error processing your query: {e}") | |
else: | |
st.warning("Please enter a query before running.") | |