Spaces:
Build error
Build error
File size: 6,896 Bytes
64d423f 0733fab 64d423f 0733fab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import json
import threading
import time
import faiss
import gradio
import numpy
import pandas
import sentence_transformers
import spaces
import transformers
# Constants
GREETING = (
"Howdy! "
"I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about research by the [Design Research Collective](https://cmudrc.github.io/). "
"And the best part is that I always try to cite my sources! "
"I still make some mistakes though. "
"What can I tell you about today?"
)
EXAMPLE_QUERIES = [
"Tell me about new research at the intersection of additive manufacturing and machine learning.",
"What is a physics-informed neural network and what can it be used for?",
"What can agent-based models do about climate change?",
"What's the difference between a markov chain and a hidden markov model?",
"What are the latest advancements in reinforcement learning?",
"What is known about different modes for human-AI teaming?",
]
EMBEDDING_MODEL_NAME = "allenai-specter"
LLM_MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
PUBLICATIONS_TO_RETRIEVE = 5
PARQUET_URL = "hf://datasets/ccm/publications/data/train-00000-of-00001.parquet"
# Load the dataset and convert to pandas
data = pandas.read_parquet(PARQUET_URL)
# Filter out any publications without an abstract
abstract_is_null = [
'"abstract": null' in json.dumps(bibdict) for bibdict in data["bib_dict"].values
]
data = data[~pandas.Series(abstract_is_null)]
data.reset_index(inplace=True)
# Load the model for later use in embeddings
model = sentence_transformers.SentenceTransformer(EMBEDDING_MODEL_NAME)
# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(LLM_MODEL_NAME, trust_remote_code=True)
streamer = transformers.TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME, device_map="auto", torch_dtype="auto", trust_remote_code=True
)
# Create a FAISS index for fast similarity search
metric = faiss.METRIC_INNER_PRODUCT
vectors = numpy.stack(data["embedding"].tolist(), axis=0)
index = faiss.IndexFlatL2(len(data["embedding"][0]))
index.metric_type = metric
faiss.normalize_L2(vectors)
index.train(vectors)
index.add(vectors)
def preprocess(query: str, k: int) -> tuple[str, str]:
"""
Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
Args:
query (str): The user's query
k (int): The number of results to return
Returns:
tuple[str, str]: A tuple containing the prompt and references
"""
encoded_query = numpy.expand_dims(model.encode(query), axis=0)
faiss.normalize_L2(encoded_query)
D, I = index.search(encoded_query, k)
top_five = data.loc[I[0]]
prompt = (
"You are an AI assistant who delights in helping people learn about research from the Design Research Collective, which is a research lab at Carnegie Mellon University led by Professor Chris McComb. "
"Your main task is to provide a concise ANSWER to the USER_QUERY that includes as many of the RESEARCH_ABSTRACTS as possible. "
"The RESEARCH_ABSTRACTS are provided in the `.bibtex` format. Your ANSWER should contain citations to the RESEARCH_ABSTRACTS using (AUTHOR, YEAR) format. "
"DO NOT list references at the end of the answer.\n\n"
"RESEARCH_ABSTRACTS:\n```bibtex\n{{ABSTRACTS_GO_HERE}}\n```\n\n"
"USER_GUERY:\n{{QUERY_GOES_HERE}}\n\n"
"ANSWER:\n"
)
references = []
research_abstracts = ""
for i in range(k):
year = str(int(top_five["bib_dict"].values[i]["pub_year"]))
abstract = top_five["bib_dict"].values[i]["abstract"]
url = "https://scholar.google.com/citations?view_op=view_citation&citation_for_view=" + top_five["author_pub_id"].values[i]
title = top_five["bib_dict"].values[i]["title"]
last_names = [
author.split(" ")[-1]
for author in top_five["bib_dict"]
.values[i]["author"]
.split(" and ")
]
authors = ", ".join(
last_names
)
first_authors_last_name = last_names[0]
research_abstracts += top_five["bibtex"].values[i] + "\n"
references.append(f"<a href=\"{url}\">{first_authors_last_name} {year}</a>")
prompt = prompt.replace("{{ABSTRACTS_GO_HERE}}", research_abstracts)
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
print(prompt)
return prompt, "; ".join(references)
@spaces.GPU
def reply(message: str, history: list[str]) -> str:
"""
This function is responsible for crafting a response
Args:
message (str): The user's message
history (list[str]): The conversation history
Returns:
str: The AI's response
"""
# Apply preprocessing
message, bypass = preprocess(message, PUBLICATIONS_TO_RETRIEVE)
# This is some handling that is applied to the history variable to put it in a good format
history_transformer_format = [
{"role": role, "content": message_pair[idx]}
for message_pair in history
for idx, role in enumerate(["user", "assistant"])
if message_pair[idx] is not None
] + [{"role": "user", "content": message}]
# Stream a response from pipe
text = tokenizer.apply_chat_template(
history_transformer_format, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != "<":
partial_message += new_token
time.sleep(0.01)
yield partial_message
yield partial_message + "\n\n" + bypass
# Create and run the gradio interface
gradio.ChatInterface(
reply,
examples=EXAMPLE_QUERIES,
chatbot=gradio.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=False,
value=[[None, GREETING]],
avatar_images=[
"https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png",
"https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png",
],
height="60vh",
bubble_full_width=False,
),
retry_btn=None,
undo_btn=None,
clear_btn=None,
theme=gradio.themes.Default(
font=[gradio.themes.GoogleFont("Zilla Slab")]
)
).launch(debug=True)
|