|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from datasets import load_dataset |
|
from pandasai import Agent |
|
from pandasai.llm.openai import OpenAI |
|
from langchain_community.embeddings.openai import OpenAIEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_openai import ChatOpenAI |
|
from langchain.chains import RetrievalQA |
|
from langchain.schema import Document |
|
import os |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
st.title("Data Analyzer") |
|
|
|
|
|
api_key = os.getenv("OPENAI_API_KEY") |
|
pandasai_api_key = os.getenv("PANDASAI_API_KEY") |
|
|
|
if not api_key or not pandasai_api_key: |
|
st.error( |
|
"API keys not found in the environment. Please set the 'OPENAI_API_KEY' and 'PANDASAI_API_KEY' environment variables." |
|
) |
|
logger.error("API keys not found. Ensure they are set in the environment variables.") |
|
else: |
|
def load_dataset_into_session(): |
|
"""Function to load a dataset into the session.""" |
|
input_option = st.radio("Select Dataset Input:", ["Use Repo Dataset", "Use Hugging Face Dataset", "Upload CSV File"]) |
|
|
|
|
|
if input_option == "Use Repo Dataset": |
|
file_path = "./source/test.csv" |
|
if st.button("Load Repo Dataset"): |
|
try: |
|
st.session_state.df = pd.read_csv(file_path) |
|
st.success(f"File loaded successfully from '{file_path}'!") |
|
st.dataframe(st.session_state.df.head(10)) |
|
except Exception as e: |
|
st.error(f"Error reading file from path: {e}") |
|
logger.error(f"Error reading file from path: {e}") |
|
|
|
|
|
elif input_option == "Use Hugging Face Dataset": |
|
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") |
|
if st.button("Load Hugging Face Dataset"): |
|
try: |
|
|
|
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True) |
|
st.session_state.df = pd.DataFrame(dataset) |
|
st.success(f"Dataset '{dataset_name}' loaded successfully!") |
|
st.dataframe(st.session_state.df.head(10)) |
|
except Exception as e: |
|
st.error(f"Error loading dataset from Hugging Face: {e}") |
|
logger.error(f"Error loading Hugging Face dataset: {e}") |
|
|
|
|
|
elif input_option == "Upload CSV File": |
|
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) |
|
if uploaded_file: |
|
try: |
|
st.session_state.df = pd.read_csv(uploaded_file) |
|
st.success("File uploaded successfully!") |
|
st.dataframe(st.session_state.df.head(10)) |
|
except Exception as e: |
|
st.error(f"Error reading uploaded file: {e}") |
|
logger.error(f"Error reading uploaded file: {e}") |
|
|
|
|
|
if "df" not in st.session_state: |
|
st.session_state.df = None |
|
|
|
|
|
load_dataset_into_session() |
|
|
|
|
|
if st.session_state.df is not None: |
|
df = st.session_state.df |
|
try: |
|
|
|
llm = OpenAI(api_key=pandasai_api_key, max_tokens=1500, timeout=60) |
|
agent = Agent(df, llm=llm) |
|
|
|
|
|
documents = [ |
|
Document( |
|
page_content=", ".join([f"{col}: {row[col]}" for col in df.columns if pd.notnull(row[col])]), |
|
metadata={"index": index} |
|
) |
|
for index, row in df.iterrows() |
|
] |
|
logger.info(f"{len(documents)} documents created for RAG.") |
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
vectorstore = FAISS.from_documents(documents, embeddings) |
|
retriever = vectorstore.as_retriever() |
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=ChatOpenAI(), |
|
chain_type="stuff", |
|
retriever=retriever |
|
) |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"]) |
|
|
|
|
|
with tab1: |
|
st.header("Data Analysis using PandasAI") |
|
pandas_question = st.text_input("Ask a question about the data (PandasAI):") |
|
if pandas_question: |
|
try: |
|
result = agent.chat(pandas_question) |
|
if result: |
|
st.write("PandasAI Answer:", result) |
|
else: |
|
st.warning("PandasAI returned no result. Please try another question.") |
|
except Exception as e: |
|
st.error(f"Error from PandasAI: {e}") |
|
logger.error(f"PandasAI error: {e}") |
|
|
|
|
|
with tab2: |
|
st.header("Question Answering using RAG") |
|
rag_question = st.text_input("Ask a question about the data (RAG):") |
|
if rag_question: |
|
try: |
|
result = qa_chain.run(rag_question) |
|
st.write("RAG Answer:", result) |
|
except Exception as e: |
|
st.error(f"Error from RAG Q&A: {e}") |
|
logger.error(f"RAG error: {e}") |
|
|
|
|
|
with tab3: |
|
st.header("Data Visualization") |
|
viz_question = st.text_input("What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')") |
|
if viz_question: |
|
try: |
|
result = agent.chat(viz_question) |
|
|
|
|
|
code_pattern = r'```python\n(.*?)\n```' |
|
code_match = re.search(code_pattern, result, re.DOTALL) |
|
|
|
if code_match: |
|
viz_code = code_match.group(1) |
|
logger.debug(f"Extracted visualization code: {viz_code}") |
|
|
|
|
|
viz_code = viz_code.replace('plt.', 'px.') |
|
exec(viz_code) |
|
st.plotly_chart(fig) |
|
else: |
|
st.warning("Unable to generate a graph. Please try a different query.") |
|
logger.warning("No valid visualization code found in PandasAI response.") |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
logger.error(f"Visualization error: {e}") |
|
except Exception as e: |
|
st.error(f"An error occurred while processing the dataset: {e}") |
|
logger.error(f"Dataset processing error: {e}") |