pandasai / app3.py
DrishtiSharma's picture
Update app3.py
4e9d55c verified
raw
history blame
7.47 kB
import streamlit as st
import pandas as pd
import plotly.express as px
from datasets import load_dataset
from pandasai import Agent
from pandasai.llm.openai import OpenAI
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.schema import Document
import os
import logging
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Set the title of the app
st.title("Data Analyzer")
# Fetch API keys from environment variables
api_key = os.getenv("OPENAI_API_KEY")
pandasai_api_key = os.getenv("PANDASAI_API_KEY")
if not api_key or not pandasai_api_key:
st.error(
"API keys not found in the environment. Please set the 'OPENAI_API_KEY' and 'PANDASAI_API_KEY' environment variables."
)
logger.error("API keys not found. Ensure they are set in the environment variables.")
else:
def load_dataset_into_session():
"""Function to load a dataset into the session."""
input_option = st.radio("Select Dataset Input:", ["Use Repo Dataset", "Use Hugging Face Dataset", "Upload CSV File"])
# Option 1: Use Repo Dataset
if input_option == "Use Repo Dataset":
file_path = "./source/test.csv"
if st.button("Load Repo Dataset"):
try:
st.session_state.df = pd.read_csv(file_path)
st.success(f"File loaded successfully from '{file_path}'!")
st.dataframe(st.session_state.df.head(10))
except Exception as e:
st.error(f"Error reading file from path: {e}")
logger.error(f"Error reading file from path: {e}")
# Option 2: Use Hugging Face Dataset
elif input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
if st.button("Load Hugging Face Dataset"):
try:
# Load Hugging Face dataset
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True)
st.session_state.df = pd.DataFrame(dataset)
st.success(f"Dataset '{dataset_name}' loaded successfully!")
st.dataframe(st.session_state.df.head(10))
except Exception as e:
st.error(f"Error loading dataset from Hugging Face: {e}")
logger.error(f"Error loading Hugging Face dataset: {e}")
# Option 3: Upload CSV File
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
try:
st.session_state.df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
st.dataframe(st.session_state.df.head(10))
except Exception as e:
st.error(f"Error reading uploaded file: {e}")
logger.error(f"Error reading uploaded file: {e}")
# Initialize session state for DataFrame
if "df" not in st.session_state:
st.session_state.df = None
# Load dataset into session
load_dataset_into_session()
# Proceed only if a DataFrame is loaded
if st.session_state.df is not None:
df = st.session_state.df
try:
# Initialize PandasAI Agent
llm = OpenAI(api_key=pandasai_api_key, max_tokens=1500, timeout=60)
agent = Agent(df, llm=llm)
# Convert the DataFrame into documents for RAG
documents = [
Document(
page_content=", ".join([f"{col}: {row[col]}" for col in df.columns if pd.notnull(row[col])]),
metadata={"index": index}
)
for index, row in df.iterrows()
]
logger.info(f"{len(documents)} documents created for RAG.")
# Set up RAG
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(documents, embeddings)
retriever = vectorstore.as_retriever()
qa_chain = RetrievalQA.from_chain_type(
llm=ChatOpenAI(),
chain_type="stuff",
retriever=retriever
)
# Create tabs
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"])
# Tab 1: PandasAI Analysis
with tab1:
st.header("Data Analysis using PandasAI")
pandas_question = st.text_input("Ask a question about the data (PandasAI):")
if pandas_question:
try:
result = agent.chat(pandas_question)
if result:
st.write("PandasAI Answer:", result)
else:
st.warning("PandasAI returned no result. Please try another question.")
except Exception as e:
st.error(f"Error from PandasAI: {e}")
logger.error(f"PandasAI error: {e}")
# Tab 2: RAG Q&A
with tab2:
st.header("Question Answering using RAG")
rag_question = st.text_input("Ask a question about the data (RAG):")
if rag_question:
try:
result = qa_chain.run(rag_question)
st.write("RAG Answer:", result)
except Exception as e:
st.error(f"Error from RAG Q&A: {e}")
logger.error(f"RAG error: {e}")
# Tab 3: Data Visualization
with tab3:
st.header("Data Visualization")
viz_question = st.text_input("What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')")
if viz_question:
try:
result = agent.chat(viz_question)
# Extract Python code for visualization
code_pattern = r'```python\n(.*?)\n```'
code_match = re.search(code_pattern, result, re.DOTALL)
if code_match:
viz_code = code_match.group(1)
logger.debug(f"Extracted visualization code: {viz_code}")
# Safeguard: Modify and validate code for Plotly
viz_code = viz_code.replace('plt.', 'px.')
exec(viz_code) # Execute the visualization code
st.plotly_chart(fig)
else:
st.warning("Unable to generate a graph. Please try a different query.")
logger.warning("No valid visualization code found in PandasAI response.")
except Exception as e:
st.error(f"An error occurred: {e}")
logger.error(f"Visualization error: {e}")
except Exception as e:
st.error(f"An error occurred while processing the dataset: {e}")
logger.error(f"Dataset processing error: {e}")