|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from pandasai import Agent |
|
from langchain_community.embeddings.openai import OpenAIEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_openai import ChatOpenAI |
|
from langchain.chains import RetrievalQA |
|
from langchain.schema import Document |
|
import os |
|
|
|
|
|
st.title("Data Analyzer") |
|
|
|
|
|
api_key = os.getenv("OPENAI_API_KEY") |
|
pandasai_api_key = os.getenv("PANDASAI_API_KEY") |
|
|
|
if not api_key or not pandasai_api_key: |
|
st.error( |
|
"API keys not found in the environment. Please set the 'OPENAI_API_KEY' and 'PANDASAI_API_KEY' environment variables." |
|
) |
|
else: |
|
|
|
uploaded_file = st.file_uploader("Upload an Excel or CSV file", type=["xlsx", "csv"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
if uploaded_file.name.endswith('.xlsx'): |
|
df = pd.read_excel(uploaded_file) |
|
else: |
|
df = pd.read_csv(uploaded_file) |
|
|
|
st.write("Data Preview:") |
|
st.write(df.head()) |
|
|
|
|
|
agent = Agent(df) |
|
|
|
|
|
documents = [ |
|
Document( |
|
page_content=", ".join([f"{col}: {row[col]}" for col in df.columns]), |
|
metadata={"index": index} |
|
) |
|
for index, row in df.iterrows() |
|
] |
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
vectorstore = FAISS.from_documents(documents, embeddings) |
|
retriever = vectorstore.as_retriever() |
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=ChatOpenAI(), |
|
chain_type="stuff", |
|
retriever=retriever |
|
) |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"]) |
|
|
|
with tab1: |
|
st.header("Data Analysis using PandasAI") |
|
pandas_question = st.text_input("Ask a question about the data (PandasAI):") |
|
if pandas_question: |
|
result = agent.chat(pandas_question) |
|
st.write("PandasAI Answer:", result) |
|
|
|
with tab2: |
|
st.header("Question Answering using RAG") |
|
rag_question = st.text_input("Ask a question about the data (RAG):") |
|
if rag_question: |
|
result = qa_chain.run(rag_question) |
|
st.write("RAG Answer:", result) |
|
|
|
with tab3: |
|
st.header("Data Visualization") |
|
viz_question = st.text_input("What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')") |
|
|
|
if viz_question: |
|
try: |
|
result = agent.chat(viz_question) |
|
|
|
|
|
import re |
|
code_pattern = r'```python\n(.*?)\n```' |
|
code_match = re.search(code_pattern, result, re.DOTALL) |
|
|
|
if code_match: |
|
viz_code = code_match.group(1) |
|
|
|
viz_code = viz_code.replace('plt.', 'px.') |
|
viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)') |
|
|
|
|
|
exec(viz_code) |
|
st.plotly_chart(fig) |
|
else: |
|
st.write("Unable to generate a graph. Please try a different query.") |
|
except Exception as e: |
|
st.write(f"An error occurred: {str(e)}") |
|
st.write("Please try phrasing your query differently.") |
|
else: |
|
st.info("Please upload a file to begin analysis.") |
|
|