|
import streamlit as st |
|
import pandas as pd |
|
from pandasai import SmartDataframe |
|
from pandasai.llm import OpenAI, ChatGroq |
|
from dotenv import load_dotenv |
|
from datasets import load_dataset |
|
import os |
|
|
|
|
|
load_dotenv() |
|
|
|
def initialize_llm(model_choice): |
|
"""Initialize the chosen LLM based on the user's selection.""" |
|
groq_api_key = os.getenv("GROQ_API_KEY") |
|
openai_api_key = os.getenv("OPENAI_API_KEY") |
|
|
|
if model_choice == "llama-3.3-70b": |
|
if not groq_api_key: |
|
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") |
|
return None |
|
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") |
|
elif model_choice == "GPT-4o": |
|
if not openai_api_key: |
|
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") |
|
return None |
|
return OpenAI(api_token=openai_api_key) |
|
|
|
|
|
st.title("Patent Analytics: Chat With Your Dataset") |
|
st.markdown( |
|
""" |
|
Upload a CSV file or load a dataset from Hugging Face to: |
|
- Analyze data with natural language queries. |
|
- Visualize trends and insights (e.g., "Plot the number of patents filed per year"). |
|
""" |
|
) |
|
|
|
|
|
if "df" not in st.session_state: |
|
st.session_state.df = None |
|
|
|
|
|
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) |
|
llm = initialize_llm(model_choice) |
|
if not llm: |
|
st.stop() |
|
|
|
def load_dataset_into_session(): |
|
"""Load dataset based on user input.""" |
|
input_option = st.radio("Choose Dataset Input Method", ["Use Hugging Face Dataset", "Upload CSV File"], index=0) |
|
|
|
if input_option == "Use Hugging Face Dataset": |
|
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") |
|
if st.button("Load Dataset"): |
|
try: |
|
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True) |
|
st.session_state.df = pd.DataFrame(dataset) |
|
st.success(f"Dataset '{dataset_name}' loaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error loading dataset: {e}") |
|
elif input_option == "Upload CSV File": |
|
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) |
|
if uploaded_file: |
|
try: |
|
st.session_state.df = pd.read_csv(uploaded_file) |
|
st.success("File uploaded successfully!") |
|
except Exception as e: |
|
st.error(f"Error loading file: {e}") |
|
|
|
|
|
load_dataset_into_session() |
|
|
|
|
|
if st.session_state.df is not None: |
|
st.subheader("Dataset Preview") |
|
st.dataframe(st.session_state.df.head(10)) |
|
|
|
|
|
chat_df = SmartDataframe(st.session_state.df, config={"llm": llm}) |
|
|
|
|
|
question = st.text_input( |
|
"Ask a question about your data or request a visualization", |
|
placeholder="E.g., 'Which assignee has the most patents?' or 'Plot patent filings per year'", |
|
) |
|
|
|
if question: |
|
with st.spinner("Processing your request..."): |
|
try: |
|
|
|
response = chat_df.chat(question) |
|
|
|
|
|
if isinstance(response, pd.DataFrame): |
|
st.write("### Response") |
|
st.dataframe(response) |
|
else: |
|
st.write("### Response") |
|
st.write(response) |
|
|
|
st.success("Request processed successfully!") |
|
except Exception as e: |
|
st.error(f"An error occurred: {e}") |
|
else: |
|
st.write("Upload a CSV file or load a dataset to get started.") |