|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from datasets import load_dataset |
|
from pandasai import SmartDataframe |
|
from pandasai.llm.openai import OpenAI |
|
from langchain_community.embeddings.openai import OpenAIEmbeddings |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_openai import ChatOpenAI |
|
from langchain.chains import RetrievalQA |
|
from langchain.schema import Document |
|
import os |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
api_key = os.getenv("OPENAI_API_KEY") |
|
pandasai_api_key = os.getenv("PANDASAI_API_KEY") |
|
|
|
|
|
missing_keys = [] |
|
if not api_key: |
|
missing_keys.append("OPENAI_API_KEY") |
|
if not pandasai_api_key: |
|
missing_keys.append("PANDASAI_API_KEY") |
|
|
|
if missing_keys: |
|
missing_keys_str = ", ".join(missing_keys) |
|
raise EnvironmentError( |
|
f"The following API key(s) are missing: {missing_keys_str}. Please set them in the environment." |
|
) |
|
|
|
logger.debug(f"OPENAI_API_KEY: {api_key}") |
|
logger.debug(f"PANDASAI_API_KEY: {pandasai_api_key}") |
|
|
|
|
|
st.title("PandasAI and RAG Data Analyzer") |
|
|
|
|
|
def load_dataset_into_session(): |
|
input_option = st.radio( |
|
"Select Dataset Input:", |
|
["Use Repo Directory Dataset", "Use Hugging Face Dataset", "Upload CSV File"], |
|
) |
|
|
|
|
|
if input_option == "Use Repo Directory Dataset": |
|
file_path = "./source/test.csv" |
|
if st.button("Load Dataset"): |
|
try: |
|
st.session_state.df = pd.read_csv(file_path) |
|
st.success(f"File loaded successfully from '{file_path}'!") |
|
st.dataframe(st.session_state.df.head(10)) |
|
except Exception as e: |
|
st.error(f"Error loading dataset from the repo directory: {e}") |
|
logger.error(f"Error loading dataset from repo directory: {e}") |
|
|
|
|
|
elif input_option == "Use Hugging Face Dataset": |
|
dataset_name = st.text_input( |
|
"Enter Hugging Face Dataset Name:", value="HUPD/hupd" |
|
) |
|
if st.button("Load Hugging Face Dataset"): |
|
try: |
|
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True) |
|
if hasattr(dataset, "to_pandas"): |
|
st.session_state.df = dataset.to_pandas() |
|
else: |
|
st.session_state.df = pd.DataFrame(dataset) |
|
st.success(f"Hugging Face Dataset '{dataset_name}' loaded successfully!") |
|
st.dataframe(st.session_state.df.head(10)) |
|
except Exception as e: |
|
st.error(f"Error loading Hugging Face dataset: {e}") |
|
logger.error(f"Error loading Hugging Face dataset: {e}") |
|
|
|
|
|
elif input_option == "Upload CSV File": |
|
uploaded_file = st.file_uploader("Upload a CSV File:", type=["csv"]) |
|
if uploaded_file: |
|
try: |
|
st.session_state.df = pd.read_csv(uploaded_file) |
|
st.success("File uploaded successfully!") |
|
st.dataframe(st.session_state.df.head(10)) |
|
except Exception as e: |
|
st.error(f"Error reading uploaded file: {e}") |
|
logger.error(f"Error reading uploaded file: {e}") |
|
|
|
|
|
if "df" not in st.session_state: |
|
st.session_state.df = None |
|
|
|
|
|
load_dataset_into_session() |
|
|
|
|
|
if st.session_state.df is not None: |
|
df = st.session_state.df |
|
try: |
|
|
|
llm = OpenAI(api_token=pandasai_api_key) |
|
|
|
|
|
smart_df = SmartDataframe(df, config={"llm": llm}) |
|
|
|
|
|
documents = [ |
|
Document( |
|
page_content=", ".join( |
|
[f"{col}: {row[col]}" for col in df.columns if pd.notnull(row[col])] |
|
), |
|
metadata={"index": index}, |
|
) |
|
for index, row in df.iterrows() |
|
] |
|
|
|
|
|
embeddings = OpenAIEmbeddings() |
|
vectorstore = FAISS.from_documents(documents, embeddings) |
|
retriever = vectorstore.as_retriever() |
|
qa_chain = RetrievalQA.from_chain_type( |
|
llm=ChatOpenAI(), |
|
chain_type="stuff", |
|
retriever=retriever, |
|
) |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs( |
|
["PandasAI Analysis", "RAG Q&A", "Data Visualization"] |
|
) |
|
|
|
|
|
with tab1: |
|
st.header("PandasAI Analysis") |
|
pandas_question = st.text_input("Ask a question about the data (PandasAI):") |
|
if pandas_question: |
|
try: |
|
result = smart_df.chat(pandas_question) |
|
if result: |
|
st.write("PandasAI Answer:", result) |
|
else: |
|
st.warning("PandasAI returned no result. Try another question.") |
|
except Exception as e: |
|
st.error(f"Error during PandasAI Analysis: {e}") |
|
logger.error(f"PandasAI Analysis error: {e}") |
|
|
|
|
|
with tab2: |
|
st.header("RAG Q&A") |
|
rag_question = st.text_input("Ask a question about the data (RAG):") |
|
if rag_question: |
|
try: |
|
result = qa_chain.run(rag_question) |
|
st.write("RAG Answer:", result) |
|
except Exception as e: |
|
st.error(f"Error during RAG Q&A: {e}") |
|
logger.error(f"RAG Q&A error: {e}") |
|
|
|
|
|
with tab3: |
|
st.header("Data Visualization") |
|
viz_question = st.text_input( |
|
"What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')" |
|
) |
|
if viz_question: |
|
try: |
|
result = smart_df.chat(viz_question) |
|
import re |
|
code_pattern = r"```python\n(.*?)\n```" |
|
code_match = re.search(code_pattern, result, re.DOTALL) |
|
|
|
if code_match: |
|
viz_code = code_match.group(1) |
|
viz_code = viz_code.replace("plt.", "px.") |
|
exec(viz_code) |
|
st.plotly_chart(fig) |
|
else: |
|
st.warning("Could not generate a graph. Try a different query.") |
|
except Exception as e: |
|
st.error(f"Error during Data Visualization: {e}") |
|
except Exception as e: |
|
st.error(f"An error occurred during processing: {e}") |
|
else: |
|
st.info("Please load a dataset to start analysis.") |
|
|