import streamlit as st import pandas as pd import plotly.express as px from pandasai import Agent from pandasai.llm.openai import OpenAI from langchain_community.embeddings.openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_openai import ChatOpenAI from langchain.chains import RetrievalQA from langchain.schema import Document import os import logging # Configure logging logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) # Set the title of the app st.title("Data Analyzer") # Fetch API keys from environment variables api_key = os.getenv("OPENAI_API_KEY") pandasai_api_key = os.getenv("PANDASAI_API_KEY") if not api_key or not pandasai_api_key: st.error( "API keys not found in the environment. Please set the 'OPENAI_API_KEY' and 'PANDASAI_API_KEY' environment variables." ) logger.error("API keys not found. Ensure they are set in the environment variables.") else: # File uploader uploaded_file = st.file_uploader("Upload an Excel or CSV file", type=["xlsx", "csv"]) if uploaded_file is not None: try: # Load the data if uploaded_file.name.endswith('.xlsx'): df = pd.read_excel(uploaded_file) else: df = pd.read_csv(uploaded_file) st.write("Data Preview:") st.write(df.head()) logger.info(f"Uploaded file loaded successfully with shape: {df.shape}") # Initialize PandasAI Agent llm = OpenAI(api_key=pandasai_api_key, max_tokens=1500, timeout=60) agent = Agent(df, llm=llm) # Convert the DataFrame into documents for RAG documents = [ Document( page_content=", ".join([f"{col}: {row[col]}" for col in df.columns if pd.notnull(row[col])]), metadata={"index": index} ) for index, row in df.iterrows() ] logger.info(f"{len(documents)} documents created for RAG.") # Set up RAG embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_documents(documents, embeddings) retriever = vectorstore.as_retriever() qa_chain = RetrievalQA.from_chain_type( llm=ChatOpenAI(), chain_type="stuff", retriever=retriever ) # Create tabs tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"]) # Tab 1: PandasAI Analysis with tab1: st.header("Data Analysis using PandasAI") pandas_question = st.text_input("Ask a question about the data (PandasAI):") if pandas_question: try: result = agent.chat(pandas_question) if result: st.write("PandasAI Answer:", result) else: st.warning("PandasAI returned no result. Please try another question.") except Exception as e: st.error(f"Error from PandasAI: {e}") logger.error(f"PandasAI error: {e}") # Tab 2: RAG Q&A with tab2: st.header("Question Answering using RAG") rag_question = st.text_input("Ask a question about the data (RAG):") if rag_question: try: result = qa_chain.run(rag_question) st.write("RAG Answer:", result) except Exception as e: st.error(f"Error from RAG Q&A: {e}") logger.error(f"RAG error: {e}") # Tab 3: Data Visualization with tab3: st.header("Data Visualization") viz_question = st.text_input("What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')") if viz_question: try: result = agent.chat(viz_question) # Since PandasAI output is text, extract executable code import re code_pattern = r'```python\n(.*?)\n```' code_match = re.search(code_pattern, result, re.DOTALL) if code_match: viz_code = code_match.group(1) logger.debug(f"Extracted visualization code: {viz_code}") # Modify code to use Plotly (px) instead of matplotlib (plt) viz_code = viz_code.replace('plt.', 'px.') viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)') # Execute the code and display the chart exec(viz_code) st.plotly_chart(fig) else: st.warning("Unable to generate a graph. Please try a different query.") logger.warning("No valid visualization code found in PandasAI response.") except Exception as e: st.error(f"An error occurred: {e}") logger.error(f"Visualization error: {e}") except Exception as e: st.error(f"An error occurred while processing the file: {e}") logger.error(f"File processing error: {e}") else: st.info("Please upload a file to begin analysis.")