File size: 15,644 Bytes
62cb359
 
c0cd1dc
 
 
96d80d4
82caff6
c0cd1dc
 
 
 
 
 
 
82caff6
5ab923b
c0cd1dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82caff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d80d4
 
82caff6
 
 
 
 
 
 
 
c0cd1dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82caff6
96d80d4
c0cd1dc
 
96d80d4
c0cd1dc
 
 
 
 
 
 
96d80d4
 
 
 
 
c0cd1dc
96d80d4
 
 
 
 
c0cd1dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96d80d4
 
 
c0cd1dc
 
96d80d4
 
 
c0cd1dc
 
96d80d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0cd1dc
82caff6
 
c0cd1dc
82caff6
c0cd1dc
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import streamlit as st

import os
import re
import sys
import time
import base64
import logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logger = logging.getLogger(__name__)

from dotenv import load_dotenv
load_dotenv()

#os.environ['AWS_DEFAULT_REGION'] = 'us-west-2'

for key in st.session_state.keys():
    #del st.session_state[key]
    print(f'session state entry: {key} {st.session_state[key]}')

__spaces__ = os.environ.get('__SPACES__')

if __spaces__:
    from kron.persistence.dynamodb_request_log import get_request_log;
    st.session_state.request_log = get_request_log()

#third party service access
#hf inference api
hf_api_key = os.environ['HF_TOKEN']
ch_api_key = os.environ['COHERE_TOKEN']
bs_api_key = os.environ['BASETEN_TOKEN']

index_model = "Writer/camel-5b-hf"
INDEX_NAME = f"{index_model.replace('/', '-')}-default-no-coref"
persist_path = f"storage/{INDEX_NAME}"
MAX_LENGTH = 1024

import baseten
@st.cache_resource
def set_baseten_key(bs_api_key):
    baseten.login(bs_api_key)

set_baseten_key(bs_api_key)

def autoplay_video(video_path):
    with open(video_path, "rb") as f:
        video_content = f.read()

    video_str = f"data:video/mp4;base64,{base64.b64encode(video_content).decode()}"
    st.markdown(f"""
        <video style="display: block; margin: auto; width: 140px;" controls loop autoplay width="140" height="180">
            <source src="{video_str}" type="video/mp4">
        </video>
        """, unsafe_allow_html=True)

# sidebar
with st.sidebar:
    st.header('KG Questions')
    video, text = st.columns([2, 2])
    with video:
        autoplay_video('docs/images/kg_construction.mp4')
    with text:
        st.write(
f'''
###### The construction of a Knowledge Graph is mesmerizing.
###### Concepts in the middle are what most are doing. Are we considering anything different? Why? Why not?
###### Concepts on the edge are what few are doing. Are we considering that? Why? Why not?
'''
)
    st.caption('''###### corpus by [@[email protected]](https://sigmoid.social/@ArxivHealthcareNLP)''')
    st.caption('''###### KG Questions by [arylwen](https://github.com/arylwen/mlk8s)''')
    st.write(
f'''
#### How can <what most are doing> help with <what few are doing>?
''')




from llama_index import StorageContext
from llama_index import ServiceContext
from llama_index import load_index_from_storage 
from llama_index.langchain_helpers.text_splitter import SentenceSplitter
from llama_index.node_parser import SimpleNodeParser
from llama_index import LLMPredictor

from langchain import HuggingFaceHub
from langchain.llms.cohere import Cohere
from langchain.llms import Baseten

import tiktoken

import openai
#extensions to llama_index to support openai compatible endpoints, e.g. llama-api
from kron.llm_predictor.KronOpenAILLM import KronOpenAI
#baseten deployment expects a specific request format
from kron.llm_predictor.KronBasetenCamelLLM import KronBasetenCamelLLM
from kron.llm_predictor.KronLLMPredictor import KronLLMPredictor

#writer/camel uses endoftext 
from llama_index.utils import globals_helper
enc = tiktoken.get_encoding("gpt2")
tokenizer = lambda text: enc.encode(text, allowed_special={"<|endoftext|>"})
globals_helper._tokenizer = tokenizer


def set_openai_local():
    openai.api_key = os.environ['LOCAL_OPENAI_API_KEY']
    openai.api_base = os.environ['LOCAL_OPENAI_API_BASE']
    os.environ['OPENAI_API_KEY'] = os.environ['LOCAL_OPENAI_API_KEY']
    os.environ['OPENAI_API_BASE'] = os.environ['LOCAL_OPENAI_API_BASE']

def set_openai():
    openai.api_key = os.environ['DAVINCI_OPENAI_API_KEY']
    openai.api_base = os.environ['DAVINCI_OPENAI_API_BASE']
    os.environ['OPENAI_API_KEY'] = os.environ['DAVINCI_OPENAI_API_KEY']
    os.environ['OPENAI_API_BASE'] = os.environ['DAVINCI_OPENAI_API_BASE']

def get_hf_predictor(query_model):
    # no embeddings for now
    set_openai_local()
    llm=HuggingFaceHub(repo_id=query_model, task="text-generation", 
                       model_kwargs={"temperature": 0.01, "max_length": MAX_LENGTH}, 
                       huggingfacehub_api_token=hf_api_key)
    llm_predictor = LLMPredictor(llm)
    return llm_predictor

def get_cohere_predictor(query_model):
    # no embeddings for now
    set_openai_local()
    llm=Cohere(model='command', temperature = 0.01,
#                       model_kwargs={"temperature": 0.01, "max_length": MAX_LENGTH}, 
                       cohere_api_key=ch_api_key)
    llm_predictor = LLMPredictor(llm)
    return llm_predictor

def get_baseten_predictor(query_model):
    # no embeddings for now
    set_openai_local()
    llm=KronBasetenCamelLLM(model='3yd1ke3', temperature = 0.01,
#                       model_kwargs={"temperature": 0.01, "max_length": MAX_LENGTH, 'repetition_penalty':1.07}, 
                       model_kwargs={"temperature": 0.01, "max_length": MAX_LENGTH, 'frequency_penalty':1}, 
                       cohere_api_key=ch_api_key)
    llm_predictor = LLMPredictor(llm)
    return llm_predictor

def get_kron_openai_predictor(query_model): 
    # define LLM
    llm=KronOpenAI(temperature=0.01, model=query_model)
    llm.max_tokens = MAX_LENGTH 
    llm_predictor = KronLLMPredictor(llm)
    return llm_predictor

def get_servce_context(llm_predictor):
    # define TextSplitter
    text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=48, paragraph_separator='\n')
    #define NodeParser
    node_parser = SimpleNodeParser(text_splitter=text_splitter)
    #define ServiceContext
    service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, node_parser=node_parser)
    return service_context

def get_index(service_context, persist_path):
    print(f'Loading index from {persist_path}')
    # rebuild storage context
    storage_context = StorageContext.from_defaults(persist_dir=persist_path)
    # load index
    index = load_index_from_storage(storage_context=storage_context, 
                                    service_context=service_context, 
                                    max_triplets_per_chunk=2,
                                    show_progress = False)
    return index

def get_query_engine(index):
    #writer/camel does not understand the refine prompt
    RESPONSE_MODE = 'accumulate'
    query_engine = index.as_query_engine(response_mode = RESPONSE_MODE)
    return query_engine

def load_query_engine(llm_predictor, persist_path):
    service_context = get_servce_context(llm_predictor)
    index = get_index(service_context, persist_path)
    print(f'No query engine for {persist_path}; creating')
    query_engine = get_query_engine(index)
    return query_engine

@st.cache_resource
def build_kron_query_engine(query_model, persist_path):
    llm_predictor = get_kron_openai_predictor(query_model)    
    query_engine = load_query_engine(llm_predictor, persist_path)
    return query_engine

@st.cache_resource
def build_hf_query_engine(query_model, persist_path):
    llm_predictor = get_hf_predictor(query_model)    
    query_engine = load_query_engine(llm_predictor, persist_path)
    return query_engine

@st.cache_resource
def build_cohere_query_engine(query_model, persist_path):
    llm_predictor = get_cohere_predictor(query_model)    
    query_engine = load_query_engine(llm_predictor, persist_path)
    return query_engine

@st.cache_resource
def build_baseten_query_engine(query_model, persist_path):
    llm_predictor = get_baseten_predictor(query_model)    
    query_engine = load_query_engine(llm_predictor, persist_path)
    return query_engine

def format_response(answer):
    # Replace any eventual --
    dashes = r'(\-{2,50})'
    answer.response = re.sub(dashes, '', answer.response)
    return answer.response or "None"

def clear_question(query_model):
    if not ('prev_model' in st.session_state) or (('prev_model' in st.session_state) and (st.session_state.prev_model != query_model)) :
        if 'prev_model' in st.session_state:
            print(f'clearing question {st.session_state.prev_model} {query_model}')
        else:
            print(f'clearing question None {query_model}')
        if('question_input' in st.session_state):
            st.session_state.question = st.session_state.question_input
        st.session_state.question_input = ''
        st.session_state.question_answered = False
        st.session_state.answer = ''
        st.session_state.answer_rating = 3
        st.session_state.elapsed = 0
        st.session_state.prev_model = query_model

query, measurable, explainable, ethical = st.tabs(["Query", "Measurable", "Explainable", "Ethical"])

initial_query = ''

if 'question' not in st.session_state:
    st.session_state.question = ''

if __spaces__ :
    with query:
        answer_model = st.radio(
            "Choose the model used for inference:",
            ('baseten/Camel-5b', 'cohere/command','hf/tiiuae/falcon-7b-instruct', 'openai/text-davinci-003') #TODO start hf inference container on demand
        )
else :    
    with query:
        answer_model = st.radio(
            "Choose the model used for inference:",
            ('Local-Camel', 'HF-TKI', 'hf/tiiuae/falcon-7b-instruct', 'openai/text-davinci-003')
        )

if answer_model == 'openai/text-davinci-003':
    print(answer_model)
    query_model = 'text-davinci-003'
    clear_question(query_model)
    set_openai()
    query_engine = build_kron_query_engine(query_model, persist_path)
elif answer_model == 'hf/tiiuae/falcon-7b-instruct':
    print(answer_model)
    query_model = 'tiiuae/falcon-7b-instruct'
    clear_question(query_model)
    query_engine = build_hf_query_engine(query_model, persist_path) 
elif answer_model == 'cohere/command':
    print(answer_model)
    query_model = 'cohere/command'
    clear_question(query_model)
    query_engine = build_cohere_query_engine(query_model, persist_path)         
elif answer_model == 'baseten/Camel-5b':   
    print(answer_model)    
    query_model = 'baseten/Camel-5b'
    clear_question(query_model)
    query_engine = build_baseten_query_engine(query_model, persist_path)
elif answer_model == 'Local-Camel':
    query_model = 'Writer/camel-5b-hf'
    print(answer_model)
    clear_question(query_model)
    set_openai_local()
    query_engine = build_kron_query_engine(query_model, persist_path)
elif answer_model == 'HF-TKI':    
    query_model = 'allenai/tk-instruct-3b-def-pos-neg-expl'
    clear_question(query_model)
    query_engine = build_hf_query_engine(query_model, persist_path)
else:
    print('This is a bug.')

# to clear input box
def submit():
    st.session_state.question = st.session_state.question_input
    st.session_state.question_input = ''
    st.session_state.question_answered = False

with query:
    st.caption(f'''###### Model, question, answer and rating are logged to improve KG Questions.''')
    question = st.text_input("Enter a question, e.g. What benchmarks can we use for QA?", key='question_input',  on_change=submit )
 
if(st.session_state.question):

    #with col1:
    #    st.write(f'Answering: {st.session_state.question} with {query_model}.')
    
    try :
        with query:
            col1, col2 = st.columns([2, 2])
            if not st.session_state.question_answered:
                with st.spinner(f'Answering: {st.session_state.question} with {query_model}.'):
                    start = time.time()
                    answer = query_engine.query(st.session_state.question)
                    st.session_state.answer = answer
                    st.session_state.question_answered = True
                    end = time.time()
                    st.session_state.elapsed = (end-start)
            else:
                answer = st.session_state.answer
            answer_str = format_response(answer)
            with col1:
                if answer_str:
                    elapsed = '{:.2f}'.format(st.session_state.elapsed)
                    st.write(f'Answered: {st.session_state.question} with {query_model} in {elapsed}s. Please rate this answer.')
            with col2:
                from streamlit_star_rating import st_star_rating
                stars = st_star_rating("", maxValue=5, defaultValue=3, key="answer_rating")
            st.write(answer_str)

        with measurable:
            from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
            import matplotlib.pyplot as plt
            from PIL import Image
            wc_all, wq_question = st.columns([2, 2])
            wordcloud = WordCloud(max_font_size=50, max_words=1000, background_color="white").generate(answer_str)
            with wc_all:
                #st.write('''### Corpus''')
                image = Image.open('docs/images/all_papers_wordcloud.png')
                st.image(image)
                st.caption('''###### Corpus word frequecy.''')
            with wq_question:
                #st.write('''### Question''')
                st.image(wordcloud.to_array())
                st.caption('''###### Query word frequecy.''')
        with explainable:
            #st.write(answer.source_nodes)
            from pyvis.network import Network
            graph = Network(height="450px", width="100%")
            sources_table = []
            for nodewithscore in answer.source_nodes:  
                node = nodewithscore.node
                from llama_index.schema import NodeRelationship
                if NodeRelationship.SOURCE in node.relationships:
                    #st.write(node.relationships[NodeRelationship.SOURCE].node_id)
                    #st.write(node.text)
                    node_id = node.relationships[NodeRelationship.SOURCE].node_id
                    node_id = node_id.split('/')[-1]
                    title = node_id.split('.')[2].replace('_', ' ')
                    sources_table.extend([[title, node.text]])
                else:
                    #st.write(node.metadata['kg_rel_map'])
                    #st.write(node.text) TODO
                    rel_map = node.metadata['kg_rel_map']
                    for concept in rel_map.keys():
                        #st.write(concept)
                        graph.add_node(concept,  concept, title=concept)
                        rels = rel_map[concept]
                        for rel in rels:
                            graph.add_node(rel[1],  rel[1], title=rel[1])
                            graph.add_edge(concept,  rel[1], title=rel[0])
            st.session_state.graph_name = 'graph.html'
            graph.save_graph(st.session_state.graph_name)            
            import streamlit.components.v1 as components
            graphHtml = open(st.session_state.graph_name, 'r', encoding='utf-8')
            source_code = graphHtml.read() 
            #print(source_code)
            components.html(source_code, height = 500)
            import pandas as pd
            df = pd.DataFrame(sources_table)
            df.columns = ['paper', 'relevant text']
            st.markdown(""" <style> .font {
                                 font-size:8px;} 
                            </style> """, unsafe_allow_html=True)
            st.table(df)
            #st.write(answer.source_nodes[0].node)

    except Exception as e:
        #print(f'{type(e)}, {e}')
        answer_str = f'{type(e)}, {e}'
        st.session_state.answer_rating = -1
        st.write(f'An error occured, please try again. \n{answer_str}')
    finally:
        if 'question' in st.session_state:
            req = st.session_state.question
            if(__spaces__):
                st.session_state.request_log.add_request_log_entry(query_model, req, answer_str, st.session_state.answer_rating)