File size: 16,342 Bytes
62cb359 c0cd1dc 96d80d4 82caff6 bf1eda4 c0cd1dc a553e02 c0cd1dc 65964b2 c0cd1dc a553e02 c0cd1dc a553e02 c0cd1dc 82caff6 96d80d4 43871f1 a553e02 c0cd1dc a553e02 c0cd1dc a553e02 c0cd1dc a553e02 c0cd1dc 65964b2 c0cd1dc 65964b2 c0cd1dc a553e02 c0cd1dc a553e02 c0cd1dc a553e02 c0cd1dc bf1eda4 c0cd1dc bf1eda4 c0cd1dc a553e02 c0cd1dc 82caff6 96d80d4 c0cd1dc 96d80d4 c0cd1dc 96d80d4 a553e02 96d80d4 c0cd1dc 96d80d4 a553e02 96d80d4 c0cd1dc a553e02 c0cd1dc a553e02 c0cd1dc bf1eda4 c0cd1dc bf1eda4 c0cd1dc bf1eda4 c0cd1dc bf1eda4 65964b2 c0cd1dc bf1eda4 65964b2 c0cd1dc bf1eda4 c0cd1dc 65964b2 c0cd1dc bf1eda4 65964b2 bf1eda4 96d80d4 65964b2 96d80d4 65964b2 bf1eda4 c0cd1dc 96d80d4 65964b2 96d80d4 65964b2 c0cd1dc 82caff6 c0cd1dc 82caff6 c0cd1dc 65964b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import streamlit as st
import os
import re
import sys
import time
import base64
import random
import logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logger = logging.getLogger(__name__)
from dotenv import load_dotenv
load_dotenv()
for key in st.session_state.keys():
#del st.session_state[key]
print(f'session state entry: {key} {st.session_state[key]}')
__spaces__ = os.environ.get('__SPACES__')
if __spaces__:
from kron.persistence.dynamodb_request_log import get_request_log;
st.session_state.request_log = get_request_log()
#third party service access
#hf inference api
hf_api_key = os.environ['HF_TOKEN']
ch_api_key = os.environ['COHERE_TOKEN']
bs_api_key = os.environ['BASETEN_TOKEN']
#index_model = "Writer/camel-5b-hf"
index_model = "Arylwen/instruct-palmyra-20b-gptq-8"
INDEX_NAME = f"{index_model.replace('/', '-')}-default-no-coref"
persist_path = f"storage/{INDEX_NAME}"
MAX_LENGTH = 1024
MAX_NEW_TOKENS = 250
#import baseten
#@st.cache_resource
#def set_baseten_key(bs_api_key):
# baseten.login(bs_api_key)
#set_baseten_key(bs_api_key)
def autoplay_video(video_path):
with open(video_path, "rb") as f:
video_content = f.read()
video_str = f"data:video/mp4;base64,{base64.b64encode(video_content).decode()}"
st.markdown(f"""
<video style="display: block; margin: auto; width: 140px;" controls loop autoplay width="140" height="180">
<source src="{video_str}" type="video/mp4">
</video>
""", unsafe_allow_html=True)
# sidebar
with st.sidebar:
st.header('KG Questions')
video, text = st.columns([2, 2])
with video:
autoplay_video('docs/images/kg_construction.mp4')
with text:
st.write(
f'''
###### The construction of a Knowledge Graph is mesmerizing.
###### Concepts in the middle are what most are doing. Are we considering anything different? Why? Why not?
###### Concepts on the edge are what few are doing. Are we considering that? Why? Why not?
'''
)
st.caption('''###### corpus by [@[email protected]](https://sigmoid.social/@ArxivHealthcareNLP)''')
st.caption('''###### KG Questions by [arylwen](https://github.com/arylwen/mlk8s)''')
from llama_index.core import StorageContext, ServiceContext, load_index_from_storage
#from llama_index import ServiceContext
# from llama_index import load_index_from_storage
from llama_index.core.node_parser import SentenceSplitter
#from llama_index.node_parser import SimpleNodeParser
from llama_index.core.service_context_elements.llm_predictor import LLMPredictor
from langchain import HuggingFaceHub
from langchain.llms.cohere import Cohere
#from langchain.llms import Baseten
import tiktoken
import openai
#extensions to llama_index to support openai compatible endpoints, e.g. llama-api
from kron.llm_predictor.KronOpenAILLM import KronOpenAI
#baseten deployment expects a specific request format
#from kron.llm_predictor.KronBasetenCamelLLM import KronBasetenCamelLLM
from kron.llm_predictor.KronLLMPredictor import KronLLMPredictor
#writer/camel uses endoftext
from llama_index.core.utils import globals_helper
enc = tiktoken.get_encoding("gpt2")
tokenizer = lambda text: enc.encode(text, allowed_special={"<|endoftext|>"})
globals_helper._tokenizer = tokenizer
def set_openai_local():
openai.api_key = os.environ['LOCAL_OPENAI_API_KEY']
openai.api_base = os.environ['LOCAL_OPENAI_API_BASE']
os.environ['OPENAI_API_KEY'] = os.environ['LOCAL_OPENAI_API_KEY']
os.environ['OPENAI_API_BASE'] = os.environ['LOCAL_OPENAI_API_BASE']
def set_openai():
openai.api_key = os.environ['DAVINCI_OPENAI_API_KEY']
openai.api_base = os.environ['DAVINCI_OPENAI_API_BASE']
os.environ['OPENAI_API_KEY'] = os.environ['DAVINCI_OPENAI_API_KEY']
os.environ['OPENAI_API_BASE'] = os.environ['DAVINCI_OPENAI_API_BASE']
from kron.llm_predictor.KronHFHubLLM import KronHuggingFaceHub
def get_hf_predictor(query_model):
# no embeddings for now
set_openai_local()
#llm=HuggingFaceHub(repo_id=query_model, task="text-generation",
llm=KronHuggingFaceHub(repo_id=query_model, task="text-generation",
# model_kwargs={"temperature": 0.01, "max_new_tokens": MAX_NEW_TOKENS, 'frequency_penalty':1.17},
model_kwargs={"temperature": 0.01, "max_new_tokens": MAX_NEW_TOKENS },
huggingfacehub_api_token=hf_api_key)
llm_predictor = LLMPredictor(llm)
return llm_predictor
def get_cohere_predictor(query_model):
# no embeddings for now
set_openai_local()
llm=Cohere(model='command', temperature = 0.01,
# model_kwargs={"temperature": 0.01, "max_length": MAX_LENGTH},
cohere_api_key=ch_api_key)
llm_predictor = LLMPredictor(llm)
return llm_predictor
#def get_baseten_predictor(query_model):
# # no embeddings for now
# set_openai_local()
# llm=KronBasetenCamelLLM(model='3yd1ke3', temperature = 0.01,
# model_kwargs={"temperature": 0.01, "max_length": MAX_LENGTH, 'repetition_penalty':1.07},
# model_kwargs={"temperature": 0.01, "max_length": MAX_LENGTH, 'frequency_penalty':1},
# cohere_api_key=ch_api_key)
# llm_predictor = LLMPredictor(llm)
# return llm_predictor
def get_kron_openai_predictor(query_model):
# define LLM
llm=KronOpenAI(temperature=0.01, model=query_model)
llm.max_tokens = MAX_LENGTH
llm_predictor = KronLLMPredictor(llm)
return llm_predictor
def get_servce_context(llm_predictor):
# define TextSplitter
text_splitter = SentenceSplitter(chunk_size=192, chunk_overlap=48, paragraph_separator='\n')
#define NodeParser
#node_parser = SimpleNodeParser(text_splitter=text_splitter)
node_parser = text_splitter
#define ServiceContext
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, node_parser=node_parser)
return service_context
# hack - on subsequent calls we can pass anything as index
@st.cache_data
def get_networkx_graph_nodes(_index, persist_path):
g = _index.get_networkx_graph(100000)
sorted_nodes = sorted(g.degree, key = lambda x: x[1], reverse=True)
return sorted_nodes
@st.cache_data
def get_networkx_low_connected_components(_index, persist_path):
g = _index.get_networkx_graph(100000)
import networkx as nx
sorted_c = [c for c in sorted(nx.connected_components(g), key=len, reverse=False)]
#print(sorted_c[:100])
low_terms = []
for c in sorted_c:
for cc in c:
low_terms.extend([cc])
#print(low_terms)
return low_terms
def get_index(service_context, persist_path):
print(f'Loading index from {persist_path}')
# rebuild storage context
storage_context = StorageContext.from_defaults(persist_dir=persist_path)
# load index
index = load_index_from_storage(storage_context=storage_context,
service_context=service_context,
max_triplets_per_chunk=2,
show_progress = False)
get_networkx_graph_nodes(index, persist_path)
get_networkx_low_connected_components(index, persist_path)
return index
def get_query_engine(index):
#writer/camel does not understand the refine prompt
RESPONSE_MODE = 'accumulate'
query_engine = index.as_query_engine(response_mode = RESPONSE_MODE)
return query_engine
def load_query_engine(llm_predictor, persist_path):
service_context = get_servce_context(llm_predictor)
index = get_index(service_context, persist_path)
print(f'No query engine for {persist_path}; creating')
query_engine = get_query_engine(index)
return query_engine
@st.cache_resource
def build_kron_query_engine(query_model, persist_path):
llm_predictor = get_kron_openai_predictor(query_model)
query_engine = load_query_engine(llm_predictor, persist_path)
return query_engine
@st.cache_resource
def build_hf_query_engine(query_model, persist_path):
llm_predictor = get_hf_predictor(query_model)
query_engine = load_query_engine(llm_predictor, persist_path)
return query_engine
@st.cache_resource
def build_cohere_query_engine(query_model, persist_path):
llm_predictor = get_cohere_predictor(query_model)
query_engine = load_query_engine(llm_predictor, persist_path)
return query_engine
#@st.cache_resource
#def build_baseten_query_engine(query_model, persist_path):
# llm_predictor = get_baseten_predictor(query_model)
# query_engine = load_query_engine(llm_predictor, persist_path)
# return query_engine
def format_response(answer):
# Replace any eventual --
dashes = r'(\-{2,50})'
answer.response = re.sub(dashes, '', answer.response)
return answer.response or "None"
def clear_question(query_model):
if not ('prev_model' in st.session_state) or (('prev_model' in st.session_state) and (st.session_state.prev_model != query_model)) :
if 'prev_model' in st.session_state:
print(f'clearing question {st.session_state.prev_model} {query_model}')
else:
print(f'clearing question None {query_model}')
if('question_input' in st.session_state):
st.session_state.question = st.session_state.question_input
st.session_state.question_input = ''
st.session_state.question_answered = False
st.session_state.answer = ''
st.session_state.answer_rating = 3
st.session_state.elapsed = 0
st.session_state.prev_model = query_model
query, measurable, explainable, ethical = st.tabs(["Query", "Measurable", "Explainable", "Ethical"])
initial_query = ''
if 'question' not in st.session_state:
st.session_state.question = ''
if __spaces__ :
with query:
answer_model = st.radio(
"Choose the model used for inference:",
('hf/tiiuae/falcon-7b-instruct', 'cohere/command', 'openai/gpt-3.5-turbo-instruct') #TODO start hf inference container on demand
)
else :
with query:
answer_model = st.radio(
"Choose the model used for inference:",
('Writer/camel-5b-hf', 'mosaicml/mpt-7b-instruct', 'hf/tiiuae/falcon-7b-instruct', 'cohere/command', 'baseten/Camel-5b', 'openai/gpt-3.5-turbo-instruct')
)
if answer_model == 'openai/gpt-3.5-turbo-instruct':
print(answer_model)
query_model = 'gpt-3.5-turbo-instruct'
clear_question(query_model)
set_openai()
query_engine = build_kron_query_engine(query_model, persist_path)
graph_nodes = get_networkx_graph_nodes( "", persist_path)
most_connected = random.sample(graph_nodes[:100], 5)
low_connected = get_networkx_low_connected_components( "", persist_path)
least_connected = random.sample(low_connected, 5)
elif answer_model == 'hf/tiiuae/falcon-7b-instruct':
print(answer_model)
query_model = 'tiiuae/falcon-7b-instruct'
clear_question(query_model)
query_engine = build_hf_query_engine(query_model, persist_path)
graph_nodes = get_networkx_graph_nodes( "", persist_path)
most_connected = random.sample(graph_nodes[:100], 5)
low_connected = get_networkx_low_connected_components( "", persist_path)
least_connected = random.sample(low_connected, 5)
elif answer_model == 'cohere/command':
print(answer_model)
query_model = 'cohere/command'
clear_question(query_model)
query_engine = build_cohere_query_engine(query_model, persist_path)
graph_nodes = get_networkx_graph_nodes( "", persist_path)
most_connected = random.sample(graph_nodes[:100], 5)
low_connected = get_networkx_low_connected_components( "", persist_path)
least_connected = random.sample(low_connected, 5)
elif answer_model == 'baseten/Camel-5b':
print(answer_model)
query_model = 'baseten/Camel-5b'
clear_question(query_model)
query_engine = build_baseten_query_engine(query_model, persist_path)
graph_nodes = get_networkx_graph_nodes( "", persist_path)
most_connected = random.sample(graph_nodes[:100], 5)
low_connected = get_networkx_low_connected_components( "", persist_path)
least_connected = random.sample(low_connected, 5)
elif answer_model == 'Writer/camel-5b-hf':
query_model = 'Writer/camel-5b-hf'
print(answer_model)
clear_question(query_model)
set_openai_local()
query_engine = build_kron_query_engine(query_model, persist_path)
graph_nodes = get_networkx_graph_nodes( "", persist_path)
most_connected = random.sample(graph_nodes[:100], 5)
low_connected = get_networkx_low_connected_components( "", persist_path)
least_connected = random.sample(low_connected, 5)
elif answer_model == 'mosaicml/mpt-7b-instruct':
query_model = 'mosaicml/mpt-7b-instruct'
clear_question(query_model)
query_engine = build_hf_query_engine(query_model, persist_path)
graph_nodes = get_networkx_graph_nodes( "", persist_path)
most_connected = random.sample(graph_nodes[:100], 5)
low_connected = get_networkx_low_connected_components( "", persist_path)
least_connected = random.sample(low_connected, 5)
else:
print('This is a bug.')
# to clear the input box
def submit():
st.session_state.question = st.session_state.question_input
st.session_state.question_input = ''
st.session_state.question_answered = False
with st.sidebar:
import gensim
m_connected = []
for item in most_connected:
if not item[0].lower() in gensim.parsing.preprocessing.STOPWORDS:
m_connected.extend([item[0].lower()])
option_1 = st.selectbox("What most are studying:", m_connected, disabled=True)
option_2 = st.selectbox("What few are studying:", least_connected, disabled=True)
with query:
st.caption(f'''###### Intended for educational and research purpose. Please do not enter any private or confidential information. Model, question, answer and rating are logged to improve KG Questions.''')
question = st.text_input("Enter a question, e.g. What benchmarks can we use for QA?", key='question_input', on_change=submit )
if(st.session_state.question):
try :
with query:
col1, col2 = st.columns([2, 2])
if not st.session_state.question_answered:
with st.spinner(f'Answering: {st.session_state.question} with {query_model}.'):
start = time.time()
answer = query_engine.query(st.session_state.question)
st.session_state.answer = answer
st.session_state.question_answered = True
end = time.time()
st.session_state.elapsed = (end-start)
else:
answer = st.session_state.answer
answer_str = format_response(answer)
with col1:
if answer_str:
elapsed = '{:.2f}'.format(st.session_state.elapsed)
st.write(f'Answered: {st.session_state.question} with {query_model} in {elapsed}s. Please rate this answer.')
with col2:
from streamlit_star_rating import st_star_rating
stars = st_star_rating("", maxValue=5, defaultValue=3, key="answer_rating")
st.write(answer_str)
with measurable:
from measurable import display_wordcloud
display_wordcloud(answer, answer_str)
with explainable:
from explainable import explain
explain(answer)
except Exception as e:
answer_str = f'{type(e)}, {e}'
st.session_state.answer_rating = -1
st.write(f'An error occured, please try again. \n{answer_str}')
finally:
if 'question' in st.session_state:
req = st.session_state.question
if(__spaces__):
st.session_state.request_log.add_request_log_entry(query_model, req, answer_str, st.session_state.answer_rating)
else:
with measurable:
st.write(f'###### Ask a question to see a comparison between the corpus, answer and reference documents.')
with explainable:
st.write(f'###### Ask a question to see the knowledge graph and a list of reference documents.')
with ethical:
from ethics import display_ethics
display_ethics()
|